nature.com

Non-faradaic junction sensing

Abstract

A non-faradaic junction (NFJ) is a connection between an ionic conductor and an electronic conductor in which no electrochemical reaction takes place. The junction behaves like a capacitor and couples the ionic and electronic currents through chemistry, electricity and entropy. Its charge–voltage curve is sensitive to various environmental signals, allowing it to function as a sensor; because no reaction occurs, the sensing is non-destructive and long-lasting. NFJ sensors have high sensitivity, rapid response and small size, and they can be self-powered. These sensors are familiarly used in electrophysiology of the heart, brain and muscles, and applications are emerging in wearable and implantable devices and soft robotics, as well as in sensing pressure, sound, temperature and chemicals. In this Review, we discuss NFJ sensors, emphasizing the development of devices and materials for each side of the junction. The flexibility in choosing materials enables NFJ sensors to fulfil challenging requirements, such as softness, stretchability, transparency and degradability.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Principles of non-faradaic junction sensing.

Fig. 2: Characterization of two electrodes in an electrolyte by a sequence of voltage steps.

Fig. 3: Non-faradaic junction pressure sensing.

Fig. 4: Non-faradaic junction acoustic sensing.

Fig. 5: Non-faradaic junction temperature sensing.

Fig. 6: Non-faradaic junction chemical sensing.

References

Hood, L. & Price, N. The Age of Scientific Wellness: Why the Future of Medicine is Personalized, Predictive, Data-Rich, and in Your Hands (Harvard Univ. Press, 2023).

Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).

ArticleCASGoogle Scholar

Lee, Y., Song, W. J. & Sun, J. Y. Hydrogel soft robotics. Mater. Today Phys. 15, 100258 (2020).

ArticleGoogle Scholar

Liu, X., Liu, J., Lin, S. & Zhao, X. Hydrogel machines. Mater. Today 36, 102–124 (2020).

ArticleCASGoogle Scholar

Herrmann, A., Haag, R. & Schedler, U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 10, 2100062 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ying, B. & Liu, X. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. iScience 24, 103174 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Xiong, Y., Han, J., Wang, Y., Wang, Z. L. & Sun, Q. Emerging iontronic sensing: materials, mechanisms, and applications. Research 2022, 9867378 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Xiao, K., Wan, C., Jiang, L., Chen, X. & Antonietti, M. Bioinspired ionic sensory systems: the successor of electronics. Adv. Mater. 32, 2000218 (2020).

ArticleCASGoogle Scholar

Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

ArticleCASPubMedGoogle Scholar

de Vasconcelos, L. S. et al. Chemomechanics of rechargeable batteries: status, theories, and perspectives. Chem. Rev. 122, 13043–13107 (2022).

ArticlePubMedGoogle Scholar

Kimmel, D. W., LeBlanc, G., Meschievitz, M. E. & Cliffel, D. E. Electrochemical sensors and biosensors. Anal. Chem. 84, 685–707 (2012).

ArticleCASPubMedGoogle Scholar

Choi, N.-S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012).

ArticleCASGoogle Scholar

Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

ArticleCASPubMedGoogle Scholar

Bard, A. J., Faulkner, L. R., Leddy, J. & Zoski, C. G. Electrochemical Methods: Fundamentals and Applications Vol. 2 (Wiley, 1980).

Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

ArticleCASPubMedGoogle Scholar

Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th Anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

ArticleCASPubMedGoogle Scholar

Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Yang, J. C. et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).

ArticleCASGoogle Scholar

Liu, S., Rao, Y., Jang, H., Tan, P. & Lu, N. Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022).

ArticleCASGoogle Scholar

Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

ArticleCASPubMedGoogle Scholar

Zhang, S. et al. Stretchable electrets: nanoparticle–elastomer composites. Nano Lett. 20, 4580–4587 (2020).

ArticleCASPubMedGoogle Scholar

Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).

ArticleCASGoogle Scholar

Nie, B., Xing, S., Brandt, J. D. & Pan, T. Droplet-based interfacial capacitive sensing. Lab Chip 12, 1110–1118 (2012).

ArticleCASPubMedGoogle Scholar

Nie, B., Li, R., Brandt, J. D. & Pan, T. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 14, 1107–1116, (2014).

ArticleCASPubMedGoogle Scholar

Nie, B., Li, R., Cao, J., Brandt, J. D. & Pan, T. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 27, 6055–6062 (2015).

ArticleCASPubMedGoogle Scholar

Zhu, Z., Li, R. & Pan, T. Imperceptible epidermal–iontronic interface for wearable sensing. Adv. Mater. 30, 1705122 (2018).

ArticleGoogle Scholar

Heikenfeld, J. et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Chang, Y. et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 33, 2003464 (2021).

ArticleCASGoogle Scholar

Lu, P. et al. Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes. Sci. Bull. 66, 1091–1100 (2021).

ArticleGoogle Scholar

Zhu, P. et al. Skin–electrode iontronic interface for mechanosensing. Nat. Commun. 12, 4731 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yang, R. et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat. Commun. 14, 2907 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Cho, S. H. et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS Appl. Mater. Interfaces 9, 10128–10135 (2017).

ArticleCASPubMedGoogle Scholar

Li, R. et al. Supercapacitive iontronic nanofabric sensing. Adv. Mater. 29, 1700253 (2017).

ArticleGoogle Scholar

Chhetry, A., Kim, J., Yoon, H. & Park, J. Y. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl. Mater. Interfaces 11, 3438–3449 (2019).

ArticleCASPubMedGoogle Scholar

Bai, N. et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Xiao, Y. et al. Multilayer double-sided microstructured flexible iontronic pressure sensor with a record-wide linear working range. ACS Sens. 6, 1785–1795 (2021).

ArticleCASPubMedGoogle Scholar

Bai, N. et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range. ACS Nano 16, 4338–4347 (2022).

ArticleCASPubMedGoogle Scholar

Jin, M. L. et al. An ultrasensitive, visco-poroelastic artificial mechanotransducer skin inspired by piezo2 protein in mammalian Merkel cells. Adv. Mater. 29, 1605973 (2017).

ArticleGoogle Scholar

Choi, D. et al. A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv. Mater. Technol. 4, 1800284 (2019).

ArticleGoogle Scholar

Yuan, Y.-M. et al. Microstructured polyelectrolyte elastomer-based ionotronic sensors with high sensitivities and excellent stability for artificial skins. Adv. Mater. 36, 2310429 (2024).

ArticleCASGoogle Scholar

Gao, Y. et al. Hydrogel microphones for stealthy underwater listening. Nat. Commun. 7, 12316 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wang, M. et al. Ionogel microphones detect underwater sound with directivity and exceptional stability. ACS Appl. Electron. Mater. 2, 1295–1303 (2020).

ArticleCASGoogle Scholar

Li, S. et al. Gate-free hydrogel–graphene transistors as underwater microphones. ACS Appl. Mater. Interfaces 10, 42573–42582 (2018).

ArticleCASPubMedGoogle Scholar

Wang, Y. et al. Temperature sensing using junctions between mobile ions and mobile electrons. Proc. Natl Acad. Sci. USA 119, e2117962119 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yokota, T. et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl Acad. Sci. USA 112, 14533–14538 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Trung, T. Q., Ramasundaram, S., Hwang, B.-U. & Lee, N.-E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).

ArticleCASPubMedGoogle Scholar

Wu, J. et al. Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl. Mater. Interfaces 10, 19097–19105 (2018).

ArticleCASPubMedGoogle Scholar

Wu, Z. et al. Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13, 21854–21864 (2021).

ArticleCASPubMedGoogle Scholar

Schöning, M. J. & Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127, 1137–1151 (2002).

ArticlePubMedGoogle Scholar

Palazzo, G. et al. Detection beyond Debye’s length with an electrolyte-gated organic field-effect transistor. Adv. Mater. 27, 911–916 (2015).

ArticleCASPubMedGoogle Scholar

Hafeman, D. G., Parce, J. W. & McConnell, H. M. Light-addressable potentiometric sensor for biochemical systems. Science 240, 1182–1185 (1988).

ArticleCASPubMedGoogle Scholar

Du, L. et al. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction. Anal. Chim. Acta 1022, 106–112 (2018).

ArticleCASPubMedGoogle Scholar

Liu, Y.-L. et al. Electrical double layer-based iontronic sensor for detection of electrolytes concentration. Chin. J. Anal. Chem. 50, 13–19 (2022).

ArticleGoogle Scholar

Wang, Y., Zhang, S., Bai, Y., Jia, K. & Suo, Z. Chemical sensing by interfacial voltage. Cell Rep. Phys. Sci. 3, 101119 (2022).

ArticleCASGoogle Scholar

Björneholm, O., Nilsson, A., Sandell, A., Hernnäs, B. & Mrtensson, N. Determination of time scales for charge-transfer screening in physisorbed molecules. Phys. Rev. Lett. 68, 1892–1895 (1992).

ArticlePubMedGoogle Scholar

Zangi, R. & Engberts, J. B. F. N. Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J. Am. Chem. Soc. 127, 2272–2276 (2005).

ArticleCASPubMedGoogle Scholar

Jiang, Y. et al. Frequency-dependent electrochemical breakdown of hydrogel ionotronics. Extrem. Mech. Lett. 71, 102210 (2024).

ArticleGoogle Scholar

Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014).

ArticleGoogle Scholar

Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

ArticleCASGoogle Scholar

George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

ArticleCASGoogle Scholar

Kong, K., Hyun, J., Kim, Y., Kim, W. & Kim, D. Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode. J. Power Sources 437, 226927 (2019).

ArticleCASGoogle Scholar

Lee, J. A. et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013).

ArticlePubMedGoogle Scholar

Baughman, R. H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

ArticleCASPubMedGoogle Scholar

Torop, J. et al. Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 49, 3113–3119 (2011).

ArticleCASGoogle Scholar

Foroughi, J. et al. Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for artificial muscles and strain sensing. ACS Nano 10, 9129–9135 (2016).

ArticleCASPubMedGoogle Scholar

Nezakati, T., Seifalian, A., Tan, A. & Seifalian, A. M. Conductive polymers: opportunities and challenges in biomedical applications. Chem. Rev. 118, 6766–6843 (2018).

ArticleCASPubMedGoogle Scholar

Zhang, W., Dehghani-Sanij, A. A. & Blackburn, R. S. Carbon based conductive polymer composites. J. Mater. Sci. 42, 3408–3418 (2007).

ArticleCASGoogle Scholar

Kumar, D. & Sharma, R. C. Advances in conductive polymers. Eur. Polym. J. 34, 1053–1060 (1998).

ArticleCASGoogle Scholar

Yao, B. et al. Ultrastrong, highly conductive and capacitive hydrogel electrode for electron-ion transduction. Matter 5, 4407–4424 (2022).

ArticleCASGoogle Scholar

Cui, M., Zhang, C., Mo, J. & Wang, Z. A general strategy to achieve high-fidelity electron-ion transduction. Matter 5, 4107–4109 (2022).

ArticleCASGoogle Scholar

Lacour, S. P., Wagner, S., Huang, Z. & Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).

ArticleCASGoogle Scholar

Li, T., Huang, Z., Suo, Z., Lacour, S. P. & Wagner, S. Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 85, 3435–3437 (2004).

ArticleCASGoogle Scholar

Lacour, S. P., Jones, J., Suo, Z. & Wagner, S. Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron. Device Lett. 25, 179–181 (2004).

ArticleCASGoogle Scholar

Guo, C. F., Sun, T., Liu, Q., Suo, Z. & Ren, Z. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014).

ArticlePubMedGoogle Scholar

Guo, C. F. et al. Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes. Proc. Natl Acad. Sci. USA 112, 12332–12337 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wu, Y., Xiang, J., Yang, C., Lu, W. & Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004).

ArticleCASPubMedGoogle Scholar

Won, P. et al. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19, 6087–6096 (2019).

ArticleCASPubMedGoogle Scholar

Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017).

ArticleCASPubMedGoogle Scholar

O’Connor, T. F., Rajan, K. M., Printz, A. D. & Lipomi, D. J. Toward organic electronics with properties inspired by biological tissue. J. Mater. Chem. B 3, 4947–4952 (2015).

ArticlePubMedGoogle Scholar

Zu, M., Li, Q., Wang, G., Byun, J.-H. & Chou, T.-W. Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 23, 789–793 (2013).

ArticleCASGoogle Scholar

Song, P., Song, J. & Zhang, Y. Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. Compos. B Eng. 191, 107979 (2020).

ArticleCASGoogle Scholar

Xu, F., Wang, X., Zhu, Y. & Zhu, Y. Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 22, 1279–1283 (2012).

ArticleCASGoogle Scholar

Song, C. et al. A printed highly stretchable supercapacitor by a combination of carbon ink and polymer network. Extrem. Mech. Lett. 49, 101459 (2021).

ArticleGoogle Scholar

Chun, K.-Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010).

ArticleCASPubMedGoogle Scholar

Li, D., Lai, W.-Y., Zhang, Y.-Z. & Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 30, 1704738 (2018).

ArticleGoogle Scholar

Huang, Q. & Zhu, Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv. Mater. Technol. 4, 1800546 (2019).

ArticleGoogle Scholar

Rosset, S. & Shea, H. R. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110, 281–307 (2013).

ArticleCASGoogle Scholar

McCoul, D., Hu, W., Gao, M., Mehta, V. & Pei, Q. Recent advances in stretchable and transparent electronic materials. Adv. Electron. Mater. 2, 1500407 (2016).

ArticleGoogle Scholar

Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

ArticleCASPubMedGoogle Scholar

Chen, Z. H., Fang, R., Li, W. & Guan, J. Stretchable transparent conductors: from micro/macromechanics to applications. Adv. Mater. 31, 1900756 (2019).

ArticleGoogle Scholar

Kim, K., Park, Y.-G., Hyun, B. G., Choi, M. & Park, J.-U. Recent advances in transparent electronics with stretchable forms. Adv. Mater. 31, 1804690 (2019).

ArticleGoogle Scholar

Li, Y. et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 381, 50–53 (2023).

ArticleCASPubMedGoogle Scholar

Buwalda, S. J. et al. Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Rel. 190, 254–273 (2014).

ArticleCASGoogle Scholar

Wichterle, O. & LÍM, D. Hydrophilic gels for biological use. Nature 185, 117–118 (1960).

ArticleGoogle Scholar

Masuda, F. in Superabsorbent Polymers 573, ACS Symposium Series 88–98 (American Chemical Society, 1994).

Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998).

CASPubMedGoogle Scholar

Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Naahidi, S. et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 35, 530–544 (2017).

ArticleCASPubMedGoogle Scholar

Wan, C., Xiao, K., Angelin, A., Antonietti, M. & Chen, X. The rise of bioinspired ionotronics. Adv. Intell. Syst. 1, 1900073 (2019).

ArticleGoogle Scholar

Lee, H.-R., Kim, C.-C. & Sun, J.-Y. Stretchable ionics — a promising candidate for upcoming wearable devices. Adv. Mater. 30, 1704403 (2018).

ArticleGoogle Scholar

Jia, K., Li, X. & Wang, Y. Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter 17, 834–839 (2021).

ArticleCASPubMedGoogle Scholar

Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3, eaar3276 (2018).

ArticlePubMedGoogle Scholar

Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

ArticleCASPubMedGoogle Scholar

Yang, C. H. et al. Ionic cable. Extrem. Mech. Lett. 3, 59–65 (2015).

ArticleGoogle Scholar

Wang, Y., Xie, S., Bai, Y., Suo, Z. & Jia, K. Transduction between magnets and ions. Mater. Horiz. 8, 1959–1965 (2021).

ArticleCASPubMedGoogle Scholar

Sun, J.-Y., Keplinger, C., Whitesides, G. M. & Suo, Z. Ionic skin. Adv. Mater. 26, 7608–7614 (2014).

ArticleCASPubMedGoogle Scholar

Kim, C.-C., Lee, H.-H., Oh, K. H. & Sun, J.-Y. Highly stretchable, transparent ionic touch panel. Science 353, 682–687 (2016).

ArticleCASPubMedGoogle Scholar

Yang, C. H., Chen, B., Zhou, J., Chen, Y. M. & Suo, Z. Electroluminescence of giant stretchability. Adv. Mater. 28, 4480–4484 (2016).

ArticleCASPubMedGoogle Scholar

Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

ArticleCASPubMedGoogle Scholar

Yang, C. et al. Ionotronic luminescent fibers, fabrics, and other configurations. Adv. Mater. 32, 2005545 (2020).

ArticleCASGoogle Scholar

Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Dobashi, Y. et al. Piezoionic mechanoreceptors: force-induced current generation in hydrogels. Science 376, 502–507 (2022).

ArticleCASPubMedGoogle Scholar

Cayre, O. J., Chang, S. T. & Velev, O. D. Polyelectrolyte diode: nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 129, 10801–10806 (2007).

ArticleCASPubMedGoogle Scholar

Lim, S.-M. et al. Ion-to-ion amplification through an open-junction ionic diode. Proc. Natl Acad. Sci. USA 116, 13807–13815 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lee, H.-R. et al. A stretchable ionic diode from copolyelectrolyte hydrogels with methacrylated polysaccharides. Adv. Funct. Mater. 29, 1806909 (2019).

ArticleGoogle Scholar

Wang, Y., Wang, Z., Su, Z. & Cai, S. Stretchable and transparent ionic diode and logic gates. Extrem. Mech. Lett. 28, 81–86 (2019).

ArticleGoogle Scholar

Chen, B. et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces 6, 7840–7845 (2014).

ArticleCASPubMedGoogle Scholar

Yiming, B. et al. Ambiently and mechanically stable ionogels for soft ionotronics. Adv. Funct. Mater. 31, 2102773 (2021).

ArticleCASGoogle Scholar

Ren, Y. et al. Ionic liquid-based click-ionogels. Sci. Adv. 5, eaax0648 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Li, T., Wang, Y., Li, S., Liu, X. & Sun, J. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 32, 2002706 (2020).

ArticleGoogle Scholar

Gao, Y. et al. Highly stretchable organogel ionic conductors with extreme-temperature tolerance. Chem. Mater. 31, 3257–3264 (2019).

ArticleCASGoogle Scholar

Zhang, L. et al. Stretchable and transparent ionogel-based heaters. Mater. Horiz. 9, 1911–1920 (2022).

ArticleCASPubMedGoogle Scholar

Shi, L. et al. Highly stretchable and transparent ionic conductor with novel hydrophobicity and extreme-temperature tolerance. Research 2020, 2505619 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 6, 206–215 (2023).

ArticleCASGoogle Scholar

Park, J.-M., Lim, S. & Sun, J.-Y. Materials development in stretchable iontronics. Soft Matter 18, 6487–6510 (2022).

ArticleCASPubMedGoogle Scholar

Chen, N., Zhang, H., Li, L., Chen, R. & Guo, S. Ionogel electrolytes for high-performance lithium batteries: a review. Adv. Energy Mater. 8, 1702675 (2018).

ArticleGoogle Scholar

Kuzina, M. A., Kartsev, D. D., Stratonovich, A. V. & Levkin, P. A. Organogels versus hydrogels: advantages, challenges, and applications. Adv. Funct. Mater. 33, 2301421 (2023).

ArticleCASGoogle Scholar

Kim, H. J., Chen, B., Suo, Z. & Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 367, 773–776 (2020).

ArticleCASPubMedGoogle Scholar

Li, C. et al. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat. Commun. 14, 4853 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zhang, C. et al. 3D printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv. Mater. 34, 2105996 (2022).

ArticleCASGoogle Scholar

Jo, C., Pugal, D., Oh, I.-K., Kim, K. J. & Asaka, K. Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38, 1037–1066 (2013).

ArticleCASGoogle Scholar

Kamamichi, N., Yamakita, M., Asaka, K. & Zhi-Wei, L. A Snake-like Swimming Robot using IPMC Actuator/Sensor. in Proceedings 2006 IEEE International Conference on Robotics and Automation . ICRA 2006. 1812–1817 (IEEE, 2006).

Mirfakhrai, T., Madden, J. D. W. & Baughman, R. H. Polymer artificial muscles. Mater. Today 10, 30–38 (2007).

ArticleCASGoogle Scholar

Mauritz, K. A. & Moore, R. B. State of understanding of nafion. Chem. Rev. 104, 4535–4586 (2004).

ArticleCASPubMedGoogle Scholar

Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309–4372 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zou, W., Dong, J., Luo, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 29, 1606100 (2017).

ArticleGoogle Scholar

Zheng, N., Xu, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121, 1716–1745 (2021).

ArticleCASPubMedGoogle Scholar

Shi, Q., Jin, C., Chen, Z., An, L. & Wang, T. On the welding of vitrimers: chemistry, mechanics and applications. Adv. Funct. Mater. 33, 2300288 (2023).

ArticleCASGoogle Scholar

Shi, Q., Yu, K., Dunn, M. L., Wang, T. & Qi, H. J. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers. Macromolecules 49, 5527–5537 (2016).

ArticleCASGoogle Scholar

Yu, K. et al. Interfacial welding of dynamic covalent network polymers. J. Mech. Phys. Solids 94, 1–17 (2016).

ArticleCASGoogle Scholar

An, L., Shi, Q., Jin, C., Zhao, W. & Wang, T. J. Chain diffusion based framework for modeling the welding of vitrimers. J. Mech. Phys. Solids 164, 104883 (2022).

ArticleCASGoogle Scholar

Bui, K. et al. Stretchable, healable, and weldable vitrimer ionogel for ionotronic applications. Chem. Eng. J. 474, 145533 (2023).

ArticleCASGoogle Scholar

Peri, J. B. & Hannan, R. B. Surface hydroxyl groups on Γ-alumina1. J. Phys. Chem. 64, 1526–1530 (1960).

ArticleCASGoogle Scholar

Tamura, H., Mita, K., Tanaka, A. & Ito, M. Mechanism of hydroxylation of metal oxide surfaces. J. Colloid Interface Sci. 243, 202–207 (2001).

ArticleCASGoogle Scholar

Wang, Y. et al. Instant, tough, noncovalent adhesion. ACS Appl. Mater. Interfaces 11, 40749–40757 (2019).

ArticleCASPubMedGoogle Scholar

Suo, Z. Theory of dielectric elastomers. Acta Mech. Solid Sin. 23, 549–578 (2010).

ArticleGoogle Scholar

Pelrine, R., Kornbluh, R., Pei, Q. & Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000).

ArticleCASPubMedGoogle Scholar

Lu, T., Ma, C. & Wang, T. Mechanics of dielectric elastomer structures: a review. Extrem. Mech. Lett. 38, 100752 (2020).

ArticleGoogle Scholar

Lu, T., An, L., Li, J., Yuan, C. & Wang, T. J. Electro-mechanical coupling bifurcation and bulging propagation in a cylindrical dielectric elastomer tube. J. Mech. Phys. Solids 85, 160–175 (2015).

ArticleGoogle Scholar

An, L., Wang, F., Cheng, S., Lu, T. & Wang, T. J. Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Mater. Struct. 24, 035006 (2015).

ArticleGoogle Scholar

Le Floch, P. et al. Fundamental limits to the electrochemical impedance stability of dielectric elastomers in bioelectronics. Nano Lett. 20, 224–233 (2020).

ArticlePubMedGoogle Scholar

Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

ArticleCASGoogle Scholar

Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kim, J., Zhang, G., Shi, M. & Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374, 212–216 (2021).

ArticleCASPubMedGoogle Scholar

Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

ArticleCASPubMedGoogle Scholar

Xiang, C. et al. Stretchable and fatigue-resistant materials. Mater. Today 34, 7–16 (2020).

ArticleCASGoogle Scholar

Mu, R. et al. Polymer-filled macroporous hydrogel for low friction. Extrem. Mech. Lett. 38, 100742 (2020).

ArticleGoogle Scholar

Xing, H. et al. Strong, tough, fatigue-resistant and 3D-printable hydrogel composites reinforced by aramid nanofibers. Mater. Today 68, 84–95 (2023).

ArticleCASGoogle Scholar

Wang, Y., Nian, G., Kim, J. & Suo, Z. Polyacrylamide hydrogels. VI. Synthesis–property relation. J. Mech. Phys. Solids 170, 105099 (2023).

ArticleCASGoogle Scholar

Wang, Y. & Sun, D. Relation of synthesis and fatigue property in elastic soft materials. J. Mech. Phys. Solids 193, 105894 (2024).

ArticleCASGoogle Scholar

Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yang, C., Yin, T. & Suo, Z. Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids 131, 43–55 (2019).

ArticleCASGoogle Scholar

Liu, J. et al. Polyacrylamide hydrogels. II. elastic dissipater. J. Mech. Phys. Solids 133, 103737 (2019).

ArticleCASGoogle Scholar

Wang, Y., Yin, T. & Suo, Z. Polyacrylamide hydrogels. III. Lap shear and peel. J. Mech. Phys. Solids 150, 104348 (2021).

ArticleCASGoogle Scholar

Hassan, S., Kim, J. & Suo, Z. Polyacrylamide hydrogels. IV. Near-perfect elasticity and rate-dependent toughness. J. Mech. Phys. Solids 158, 104675 (2022).

ArticleCASGoogle Scholar

Kim, J., Yin, T. & Suo, Z. Polyacrylamide hydrogels. V. Some strands in a polymer network bear loads, but all strands contribute to swelling. J. Mech. Phys. Solids 168, 105017 (2022).

ArticleCASGoogle Scholar

Wang, Y., Liang, D., Suo, Z. & Jia, K. Synergy of noncovalent interlink and covalent toughener for tough hydrogel adhesion. Extrem. Mech. Lett. 39, 100797 (2020).

ArticleGoogle Scholar

Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016).

ArticleCASPubMedGoogle Scholar

Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Yang, J., Bai, R. & Suo, Z. Topological adhesion of wet materials. Adv. Mater. 30, 1800671 (2018).

ArticleGoogle Scholar

Gao, Y. et al. A universal strategy for tough adhesion of wet soft material. Adv. Funct. Mater. 30, 2003207 (2020).

ArticleCASGoogle Scholar

Yang, J., Bai, R., Chen, B. & Suo, Z. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30, 1901693 (2020).

ArticleCASGoogle Scholar

Wang, Y., Yang, X., Nian, G. & Suo, Z. Strength and toughness of adhesion of soft materials measured in lap shear. J. Mech. Phys. Solids 143, 103988 (2020).

ArticleGoogle Scholar

Wang, Y., Nian, G., Yang, X. & Suo, Z. Lap shear of a soft and elastic adhesive. Mech. Mater. 158, 103845 (2021).

ArticleGoogle Scholar

Fleck, N. A., Kang, K. J. & Ashby, M. F. Overview no. 112: the cyclic properties of engineering materials. Acta Metall. Mater. 42, 365–381 (1994).

ArticleCASGoogle Scholar

Ritchie, R. O. Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103, 15–28 (1988).

ArticleGoogle Scholar

Suresh, S. Fatigue of Materials 2nd edn (Cambridge Univ. Press, 1998).

Mars, W. V. & Fatemi, A. Factors that affect the fatigue life of rubber: a literature survey. Rubber Chem. Technol. 77, 391–412 (2004).

ArticleCASGoogle Scholar

Bai, R., Yang, J. & Suo, Z. Fatigue of hydrogels. Eur. J. Mech. A/Solids 74, 337–370 (2019).

ArticleGoogle Scholar

Han, Z., Lu, Y. & Qu, S. Design of fatigue-resistant hydrogels. Adv. Funct. Mater. 34, 2313498 (2024).

ArticleCASGoogle Scholar

Steck, J., Kim, J., Kutsovsky, Y. & Suo, Z. Multiscale stress deconcentration amplifies fatigue resistance of rubber. Nature 624, 303–308 (2023).

ArticleCASPubMedGoogle Scholar

Wang, Z. et al. Stretchable materials of high toughness and low hysteresis. Proc. Natl Acad. Sci. USA 116, 5967–5972 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lin, S. et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Li, X. et al. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proc. Natl Acad. Sci. USA 117, 7606–7612 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lin, S., Liu, J., Liu, X. & Zhao, X. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl Acad. Sci. USA 116, 10244–10249 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sun, D. et al. Enhance fracture toughness and fatigue resistance of hydrogels by reversible alignment of nanofibers. ACS Appl. Mater. Interfaces 14, 49389–49397 (2022).

ArticleCASPubMedGoogle Scholar

Liu, B. et al. Tough and fatigue-resistant polymer networks by crack tip softening. Proc. Natl Acad. Sci. USA 120, e2217781120 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Yang, H., Chen, X., Sun, B., Tang, J. & Vlassak, J. J. Fracture tolerance induced by dynamic bonds in hydrogels. J. Mech. Phys. Solids 169, 105083 (2022).

ArticleCASGoogle Scholar

Parsons, R. The electrical double layer: recent experimental and theoretical developments. Chem. Rev. 90, 813–826 (1990).

ArticleCASGoogle Scholar

Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Brown, M. A. et al. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte–nanoparticle interface. Phys. Rev. X 6, 011007 (2016).

Google Scholar

Brown, M. A., Goel, A. & Abbas, Z. Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 55, 3790–3794 (2016).

ArticleCASGoogle Scholar

Shi, Q. et al. Recyclable 3D printing of vitrimer epoxy. Mater. Horiz. 4, 598–607 (2017).

ArticleCASGoogle Scholar

Kuang, X. et al. Advances in 4D printing: materials and applications. Adv. Funct. Mater. 29, 1805290 (2019).

ArticleGoogle Scholar

Download references

Acknowledgements

Y.W. acknowledges the support of NSFC (12302225). K.J. acknowledges the support of NSFC (81974470). Z.S. acknowledges the support of the NSF through the Harvard University Materials Research Science and Engineering Center (DMR2011754) and the support of the Air Force Office of Scientific Research (FA9550-20-1-0397).

Author information

Authors and Affiliations

Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, China

Yecheng Wang

State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China

Kun Jia

John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA

Zhigang Suo

Authors

Yecheng Wang

View author publications

You can also search for this author in PubMedGoogle Scholar

2. Kun Jia

View author publications

You can also search for this author in PubMedGoogle Scholar

3. Zhigang Suo

View author publications

You can also search for this author in PubMedGoogle Scholar

Contributions

All authors contributed equally to the manuscript.

Corresponding authors

Correspondence to Yecheng Wang, Kun Jia or Zhigang Suo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jia, K. & Suo, Z. Non-faradaic junction sensing. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00755-1

Download citation

Accepted:31 October 2024

Published:09 December 2024

DOI:https://doi.org/10.1038/s41578-024-00755-1

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page