nature.com

Interplay between periodontitis and chronic kidney disease

Abstract

Periodontitis is a ubiquitous chronic inflammatory disease affecting the supporting tissues of the teeth and is a major cause of multiple tooth loss. Despite being preventable, periodontitis and dental caries are responsible for more years lost to disability than any other human condition. The most severe form of periodontitis affects 1 billion individuals, and its prevalence is increasing globally. Periodontitis arises from a dysregulated and hyperactive inflammatory response to dysbiosis in the periodontal microbiome. This response has systemic effects associated with premature mortality and elevated risk of several systemic non-communicable diseases (NCDs), including atheromatous cardiovascular disease, type 2 diabetes and chronic kidney disease (CKD). This risk association between periodontitis and NCDs is independent of their shared common risk factors, suggesting that periodontitis is a non-traditional risk factor for NCDs such as CKD. As periodontitis progresses, the immune cells and mediators underpinning its pathophysiology leak into the systemic circulation through the ulcerated oral mucosal lining, inducing in a systemic inflammatory profile that closely mirrors that observed in patients with CKD. The relationship between periodontitis and CKD seems to be bi-directional, but large-scale intervention studies are required to clarify causality and could lead to new care pathways for managing each condition as an exposure for the other.

Key points

Periodontitis is a ubiquitous chronic inflammatory non-communicable disease (NCD) and the most common cause of multiple tooth loss in humans. Alongside dental caries, periodontitis is responsible for more years lost to disability than any other human disease.

Periodontitis shares common risk factors with other NCDs but is also an independent risk factor for type 2 diabetes mellitus, atherogenic cardiovascular disease and chronic kidney disease (CKD), amongst other NCDs.

Periodontitis arises from a dysregulated and hyperactive immune-inflammatory response to dysbiosis within the periodontal microbiome. These responses cause local injury that leads to the release of inflammatory mediators and pathogenic bacteria into the vasculature, with systemic effects that can affect distant organs.

Several studies suggest a bidirectional causal relationship between periodontitis and CKD, with systemic oxidative stress being identified as an important mediator.

Immune cell hyper-activity and -reactivity is a feature of periodontitis. Among innate immune cells of myeloid lineage (predominantly neutrophils), persistent hyperreactivity is likely driven by maladaptive innate immune training. Clonal haematopoiesis of indeterminate potential in older individuals might be another source of pro-inflammatory cells that contribute to the bidirectional link between periodontitis and CKD.

Large-scale intervention studies are needed to examine the causal nature of the relationship between periodontitis and CKD definitively, and could lead to novel therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Influence of periodontitis and diabetes on CKD survival.

Fig. 2: Progression from pristine health to periodontitis.

Fig. 3: Potential causal pathways linking periodontal disease and kidney dysfunction.

Fig. 4: Biologically plausible mechanisms underlying the interplay between periodontitis and CKD.

References

Caton, J. G. et al. A new classification scheme for periodontal and peri-implant diseases and conditions — introduction and key changes from the 1999 classification. J. Clin. Periodontol. 45, S1–S8 (2018).

ArticlePubMedGoogle Scholar

Chapple, I. L. C. et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J. Periodontol. 89, S74–S84 (2018).

ArticlePubMedGoogle Scholar

Kinane, D. F. & Attström, R. & European Workshop Periodontology group B. Advances in the pathogenesis of periodontitis. Group B consensus report of the fifth European Workshop in Periodontology. J. Clin. Periodontol. 32, 130–131 (2005).

ArticlePubMedGoogle Scholar

Peric, M., Marhl, U., Gennai, S., Marruganti, C. & Graziani, F. Treatment of gingivitis is associated with reduction of systemic inflammation and improvement of oral health-related quality of life: a randomized clinical trial. J. Clin. Periodontol. 49, 899–910 (2022).

ArticleCASPubMedGoogle Scholar

Roberts, H. M., Yonel, Z., Kantarci, A., Grant, M. M. & Chapple, I. L. C. Impact of gingivitis on circulating neutrophil reactivity and gingival crevicular fluid inflammatory proteins. Int. J. Environ. Res. Public. Health 19, 6339 (2022).

The Economist Intelligence Unit. Time to take gum disease seriously. The societal and economic impact of periodontitis. https://impact.economist.com/perspectives/sites/default/files/eiu-efp-oralb-gum-disease.pdf (2021).

Van Dyke, T. E., Bartold, P. M. & Reynolds, E. C. The nexus between periodontal inflammation and dysbiosis. Front. Immunol. 11, 511 (2020).

Chen, M. X., Zhong, Y. J., Dong, Q. Q., Wong, H. M. & Wen, Y. F. Global, regional, and national burden of severe periodontitis, 1990–2019: an analysis of the Global Burden of Disease Study 2019. J. Clin. Periodontol. 48, 1165–1188 (2021).

ArticlePubMedGoogle Scholar

Nascimento, G. G., Alves-Costa, S. & Romandini, M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study. J. Periodontal Res. 59, 823–867 (2024).

ArticlePubMedGoogle Scholar

Passarelli, P. C. et al. Reasons for tooth extractions and related risk factors in adult patients: a cohort study. Int. J. Environ. Res. Public Health 17, 2575 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Botelho, J. et al. Economic burden of periodontitis in the United States and Europe — an updated estimation. J. Periodontol. 93, 373–379 (2022).

ArticlePubMedGoogle Scholar

James, S. L. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

ArticleGoogle Scholar

Sharma, P., Yonel, Z., Busby, M., Chapple, I. L. & Dietrich, T. Association between periodontal health status and patient-reported outcomes in patients managed in a non-specialist, general dental practice. J. Clin. Periodontol. 45, 1440–1447 (2018).

ArticlePubMedGoogle Scholar

Pattamatta, M., Chapple, I., Listl, S. The value-for money of preventing and managing periodontitis: opportunities and challenges. Periodontol. 2000https://doi.org/10.1111/prd.12569 (2024).

Bikbov, B. et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

ArticleGoogle Scholar

Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).

ArticlePubMedPubMed CentralGoogle Scholar

Chapple, I. L. C. et al. Primary prevention of periodontitis: managing gingivitis. J. Clin. Periodontol. 42, S71–S76 (2015).

ArticlePubMedGoogle Scholar

Garcia, R. I., Krall, E. A. & Vokonas, P. S. Periodontal disease and mortality from all causes in the VA dental longitudinal study. Ann. Periodontol. 3, 339–349 (1998).

ArticleCASPubMedGoogle Scholar

Soikkonen, K., Wolf, J., Salo, T. & Tilvis, R. Radiographic periodontal attachment loss as an indicator of death risk in the elderly. J. Clin. Periodontol. 27, 87–92 (2000).

ArticleCASPubMedGoogle Scholar

Söder, B., Jin, L. J., Klinge, B. & Söder, P. O. Periodontitis and premature death: a 16-year longitudinal study in a Swedish urban population. J. Periodontal Res. 42, 361–366 (2007).

ArticlePubMedGoogle Scholar

Linden, G. J. et al. All-cause mortality and periodontitis in 60–70-year-old men: a prospective cohort study. J. Clin. Periodontol. 39, 940–946 (2012).

ArticlePubMedGoogle Scholar

Monsarrat, P. et al. Clinical research activity in periodontal medicine: a systematic mapping of trial registers. J. Clin. Periodontol. 43, 390–400 (2016).

ArticlePubMedGoogle Scholar

Sanz, M. et al. Scientific evidence on the links between periodontal diseases and diabetes: consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. Diabetes Res. Clin. Pract. 137, 231–241 (2018).

ArticlePubMedGoogle Scholar

Sanz, M. et al. Periodontitis and cardiovascular diseases: consensus report. J. Clin. Periodontol. 47, 268–288 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Meyle, J. & Chapple, I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000 69, 7–17 (2015).

ArticlePubMedGoogle Scholar

Rothman, K. J. Epidemiology: An introduction. 168–180 (Oxford University Press, 2002).

Sharma, P., Dietrich, T., Ferro, C. J., Cockwell, P. & Chapple, I. L. C. Association between periodontitis and mortality in stages 3-5 chronic kidney disease: NHANES III and linked mortality study. J. Clin. Periodontol. 43, 104–113 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Milward, M. R. et al. Differential activation of NF-κB and gene expression in oral epithelial cells by periodontal pathogens. Clin. Exp. Immunol. 148, 307–324 (2007).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hajishengallis, G. et al. Complement-dependent mechanisms and interventions in periodontal disease. Front. Immunol. 10, 406 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Petr, V. & Thurman, J. M. The role of complement in kidney disease. Nat. Rev. Nephrol. 19, 771–787 (2023).

ArticlePubMedGoogle Scholar

Cooper, P. R., Palmer, L. J. & Chapple, I. L. C. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol 2000 63, 165–197 (2013).

ArticlePubMedGoogle Scholar

Silva, L. M. et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 374, eabl5450 (2021).

ArticleCASPubMedGoogle Scholar

Bennett, W. R. et al. Activation of the complement system by recombinant tissue plasminogen activator. J. Am. Coll. Cardiol. 10, 627–632 (1987).

ArticleCASPubMedGoogle Scholar

Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Song, L. et al. Interleukin-17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol. Med. Rep. 19, 4743–4752 (2019).

CASPubMedPubMed CentralGoogle Scholar

Hajishengallis, G. & Lamont, R. J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral. Microbiol. 27, 409–419 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Dias, I. H. K. et al. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro. PLoS ONE 8, e66407 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Matthews, J. B., Wright, H. J., Roberts, A., Cooper, P. R. & Chapple, I. L. C. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clin. Exp. Immunol. 147, 255–264 (2007).

ArticleCASPubMedPubMed CentralGoogle Scholar

Matthews, J. B. et al. Neutrophil hyper-responsiveness in periodontitis. J. Dent. Res. 86, 718–722 (2007).

ArticleCASPubMedGoogle Scholar

Wright, H. J., Matthews, J. B., Chapple, I. L. C., Ling-Mountford, N. & Cooper, P. R. Periodontitis associates with a type 1 IFN signature in peripheral blood neutrophils. J. Immunol. 181, 5775–5784 (2008).

ArticleCASPubMedGoogle Scholar

Ling, M. R., Chapple, I. L. C. & Matthews, J. B. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun. 21, 714–725 (2015).

ArticleCASPubMedGoogle Scholar

Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Li, X. et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185, 1709–1727.e18 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Dias, I. H. K. et al. Gingipains from Porphyromonas gingivalis increase the chemotactic and respiratory burst-priming properties of the 77-amino-acid interleukin-8 variant. Infect. Immun. 76, 317–323 (2008).

ArticleCASPubMedGoogle Scholar

Roberts, H. M. et al. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J. Clin. Periodontol. 42, 1–11 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hirschfeld, J., White, P. C., Milward, M. R., Cooper, P. R. & Chapple, I. L. C. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria. Infect. Immun. 85, e00297–e00317 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

de Pablo, P. et al. The autoantibody repertoire in periodontitis: a role in the induction of autoimmunity to citrullinated proteins in rheumatoid arthritis? Ann. Rheum. Dis. 73, 580–586 (2014).

ArticlePubMedGoogle Scholar

Diabetes: a defining disease of the 21st century. Lancet 401, 2087 (2023).

Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

de Boer, I. H. et al. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment. Kidney Int. 98, 839–848 (2020).

ArticlePubMedGoogle Scholar

Bommer, C. et al. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care 41, 963–970 (2018).

ArticlePubMedGoogle Scholar

Daryabor, G., Atashzar, M. R., Kabelitz, D., Meri, S. & Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 11, 1582 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hirschfeld, J. & Chapple, I. L. C. Periodontitis and Systemic Diseases: Clinical Evidence and Biological Plausibility, 1st edn (Quintessenz Verlag, 2021).

Herrera, D. et al. Association between periodontal diseases and cardiovascular diseases, diabetes and respiratory diseases: consensus report of the Joint Workshop by the European Federation of Periodontology (EFP) and the European arm of the World Organization of Family Doctors (WONCA Europe). J. Clin. Periodontol. 50, 819–841 (2023).

ArticleCASPubMedGoogle Scholar

Chen, S., Gao, X. & Song, J. Oxidative stress-related biomarkers in chronic periodontitis patients with or without type 2 diabetes: a systematic review and meta-analysis. J. Periodontal Res. 58, 780–790 (2023).

ArticleCASPubMedGoogle Scholar

Atieh, M. A., M. Faggion, C. & Seymour, G. J. Cytokines in patients with type 2 diabetes and chronic periodontitis: a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 104, e38–e45 (2014).

ArticleCASPubMedGoogle Scholar

Artese, H. P. et al. Periodontal therapy and systemic inflammation in type 2 diabetes mellitus: a meta-analysis. PLoS ONE 10, e0128344 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Nie, L. et al. Diabetes induces macrophage dysfunction through cytoplasmic dsDNA/AIM2 associated pyroptosis. J. Leukoc. Biol. 110, 497–510 (2021).

ArticleCASPubMedGoogle Scholar

Karima, M. et al. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis. J. Leukoc. Biol. 78, 862–870 (2005).

ArticleCASPubMedGoogle Scholar

Hoogeveen, E. K. The epidemiology of diabetic kidney disease. Kidney Dial. 2, 433–442 (2022).

ArticleGoogle Scholar

Kang, N. et al. Periodontitis induced by Porphyromonas gingivalis drives impaired glucose metabolism in mice. Front. Cell Infect. Microbiol. 12, 998600 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Blasco-Baque, V. et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 66, 872–885 (2017).

ArticleCASPubMedGoogle Scholar

Ishikawa, M. et al. Oral Porphyromonas gingivalis translocates to the liver and regulates hepatic glycogen synthesis through the Akt/GSK-3β signaling pathway. Biochim. Biophys. Acta 1832, 2035–2043 (2013).

ArticleCASPubMedGoogle Scholar

Ramenzoni, L. L. et al. Bacterial supernatants elevate glucose-dependent insulin secretion in rat pancreatic INS-1 line and islet β-cells via PI3K/AKT signaling. Mol. Cell Biochem. 452, 17–27 (2019).

ArticleCASPubMedGoogle Scholar

Bhat, U. G., Ilievski, V., Unterman, T. G. & Watanabe, K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic β cell line MIN6. J. Periodontol. 85, 1629–1636 (2014).

ArticlePubMedPubMed CentralGoogle Scholar

Zuo, L., Zhou, T., Pannell, B. K., Ziegler, A. C. & Best, T. M. Biological and physiological role of reactive oxygen species — the good, the bad and the ugly. Acta Physiol. 214, 329–348 (2015).

ArticleCASGoogle Scholar

Amdur, R. L. et al. Inflammation and progression of CKD: the CRIC study. Clin. J. Am. Soc. Nephrol. 11, 1546–1556 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Alzamil, H. Elevated serum TNF-α is related to obesity in type 2 diabetes mellitus and is associated with glycemic control and insulin resistance. J. Obes. 2020, 5076858 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Zhao, M. et al. Diabetes mellitus promotes susceptibility to periodontitis — novel insight into the molecular mechanisms. Front. Endocrinol. 14, 1192625 (2023).

ArticleGoogle Scholar

Yamagishi, S.-I. & Matsui, T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid. Med. Cell. Longev. 3, 938285 (2010).

ArticleGoogle Scholar

Dowey, R., Iqbal, A., Heller, S. R., Sabroe, I. & Prince, L. R. A bittersweet response to infection in diabetes; targeting neutrophils to modify inflammation and improve host immunity. Front. Immunol. 12, 678771 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Castanheira, F. V. S. & Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133, 2178–2185 (2019).

ArticleCASPubMedGoogle Scholar

Fredman, G. et al. Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1. PLoS ONE 6, e24422 (2011).

ArticleCASPubMedPubMed CentralGoogle Scholar

Chapple, I. L. C., Hirschfeld, J., Kantarci, A., Wilensky, A. & Shapira, L. The role of the host — neutrophil biology. Periodontol. 2000https://doi.org/10.1111/prd.12490 (2023).

Lindstrom, M. et al. Global burden of cardiovascular diseases and risks collaboration, 1990–2021. J. Am. Coll. Cardiol. 80, 2372–2425 (2022).

ArticlePubMedGoogle Scholar

Björkegren, J. L. M. & Lusis, A. J. Atherosclerosis: recent developments. Cell 185, 1630–1645 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Lorber, D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes, Metab. Syndr. Obes. 7, 169–183 (2014).

ArticleCASPubMedGoogle Scholar

Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease. Circulation 143, 1157–1172 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kebschull, M., Demmer, R. T. & Papapanou, P. N. “Gum bug, leave my heart alone!” — epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J. Dent. Res. 89, 879–902 (2010).

ArticleCASPubMedPubMed CentralGoogle Scholar

Herrera, D., Molina, A., Buhlin, K. & Klinge, B. Periodontal diseases and association with atherosclerotic disease. Periodontol 2000 83, 66–89 (2020).

ArticlePubMedGoogle Scholar

Afzoon, S., Amiri, M. A., Mohebbi, M., Hamedani, S. & Farshidfar, N. A systematic review of the impact of Porphyromonas gingivalis on foam cell formation: implications for the role of periodontitis in atherosclerosis. BMC Oral. Health 23, 481 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Brun, A. et al. Oral microbiota and atherothrombotic carotid plaque vulnerability in periodontitis patients. A cross-sectional study. J. Periodontal Res. 56, 339–350 (2021).

ArticleCASPubMedGoogle Scholar

Ziebolz, D. et al. Periodontal bacteria DNA findings in human cardiac tissue — is there a link of periodontitis to heart valve disease? Int. J. Cardiol. 251, 74–79 (2018).

ArticleCASPubMedGoogle Scholar

Szulc, M. et al. Presence of periodontopathic bacteria DNA in atheromatous plaques from coronary and carotid arteries. Biomed. Res. Int. 2015, 825397 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Kozarov, E. V., Dorn, B. R., Shelburne, C. E., Dunn, W. A. Jr. & Progulske-Fox, A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 25, e17–18 (2005).

ArticleCASPubMedGoogle Scholar

Farrugia, C. et al. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J. 288, 1479–1495 (2021).

ArticleCASPubMedGoogle Scholar

Rivera, M. F. et al. Polymicrobial infection with major periodontal pathogens induced periodontal disease and aortic atherosclerosis in hyperlipidemic ApoEnull mice. PLoS ONE 8, e57178 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Roth, G. A. et al. Porphyromonas gingivalis infection and cell death in human aortic endothelial cells. FEMS Microbiol. Lett. 272, 106–113 (2007).

ArticleCASPubMedGoogle Scholar

Hasheminasabgorji, E. & Jha, J. C. Dyslipidemia, diabetes and atherosclerosis: role of inflammation and ROS-redox-sensitive factors. Biomedicines 9, 1602 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Allen, M. R., Chen, N. X., Gattone, V. H. II & Moe, S. M. Adverse mandibular bone effects associated with kidney disease are only partially corrected with bisphosphonate and/or calcium treatment. Am. J. Nephrol. 38, 458–464 (2013).

ArticleCASPubMedGoogle Scholar

Mirzaei, A. et al. Association of periodontitis with lipid profile: an updated systematic review and meta-analysis. J. Diabetes Metab. Disord. 21, 1377–1393 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lan, Y. et al. Temporal relationship between atherogenic dyslipidemia and inflammation and their joint cumulative effect on type 2 diabetes onset: a longitudinal cohort study. BMC Med. 21, 31 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Rotariu, D. et al. Oxidative stress — complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother. 152, 113238 (2022).

ArticleCASPubMedGoogle Scholar

Irwandi, R. A., Kuswandani, S. O., Harden, S., Marletta, D. & D’Aiuto, F. Circulating inflammatory cell profiling and periodontitis: a systematic review and meta-analysis. J. Leukoc. Biol. 111, 1069–1096 (2022).

ArticleCASPubMedGoogle Scholar

Congrains, A., Kamide, K., Ohishi, M. & Rakugi, H. ANRIL: molecular mechanisms and implications in human health. Int. J. Mol. Sci. 14, 1278–1292 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wyganowska-Świątkowska, M., Surdacka, A., Skrzypczak-Jankun, E. & Jankun, J. The plasminogen activation system in periodontal tissue (Review). Int. J. Mol. Med. 33, 763–768 (2014).

ArticlePubMedGoogle Scholar

Loos, B. G. & Van Dyke, T. E. The role of inflammation and genetics in periodontal disease. Periodontol 2000 83, 26–39 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Vlasschaert, C. et al. Clonal haematopoiesis, ageing and kidney disease. Nat. Rev. Nephrol. 20, 161–174 (2024).

ArticlePubMedGoogle Scholar

Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Dawoud, A. A. Z., Gilbert, R. D., Tapper, W. J. & Cross, N. C. P. Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease. Leukemia 36, 507–515 (2022).

ArticleCASPubMedGoogle Scholar

Hajishengallis, G., Li, X., Divaris, K. & Chavakis, T. Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontol 2000 89, 215–230 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

ArticlePubMedGoogle Scholar

Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Fox, C. S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380, 1662–1673 (2012).

ArticlePubMedPubMed CentralGoogle Scholar

van der Velde, M. et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 79, 1341–1352 (2011).

ArticlePubMedGoogle Scholar

Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L. & Perkovic, V. Chronic kidney disease. Lancet 398, 786–802 (2021).

ArticleCASPubMedGoogle Scholar

Zoccali, C. et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 119, 2017–2032 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Major, R. W. et al. Cardiovascular disease risk factors in chronic kidney disease: a systematic review and meta-analysis. PLoS ONE 13, e0192895 (2018).

ArticlePubMedPubMed CentralGoogle Scholar

Ravarotto, V., Bertoldi, G., Stefanelli, L. F., Nalesso, F. & Calo, L. A. Pathomechanism of oxidative stress in cardiovascular-renal remodeling and therapeutic strategies. Kidney Res. Clin. Pract. 41, 533–544 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Dalrymple, L. S. & Go, A. S. Epidemiology of acute infections among patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1487–1493 (2008).

ArticlePubMedPubMed CentralGoogle Scholar

Voroneanu, L. et al. Gut microbiota in chronic kidney disease: from composition to modulation towards better outcomes — a systematic review. J. Clin. Med. 12, e12051948 (2023).

ArticleGoogle Scholar

Bello, A. K. et al. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol. 18, 378–395 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Birdwell, K. A. & Park, M. Post-transplant cardiovascular disease. Clin. J. Am. Soc. Nephrol. 16, 1878–1889 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

ArticleCASPubMedGoogle Scholar

Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

ArticleCASPubMedGoogle Scholar

Rayego-Mateos, S. et al. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int. 103, 282–296 (2023).

ArticleCASPubMedGoogle Scholar

Tong, A. et al. Implementing core outcomes in kidney disease: report of the Standardized Outcomes in Nephrology (SONG) implementation workshop. Kidney Int. 94, 1053–1068 (2018).

ArticlePubMedPubMed CentralGoogle Scholar

Fletcher, B. R. et al. Symptom burden and health-related quality of life in chronic kidney disease: a global systematic review and meta-analysis. PLoS Med. 19, e1003954 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Matsushita, K. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

ArticlePubMedPubMed CentralGoogle Scholar

Genco, R. J. & Sanz, M. Clinical and public health implications of periodontal and systemic diseases: an overview. Periodontol 2000 83, 7–13 (2020).

ArticlePubMedGoogle Scholar

KDIGO. KDIGO 2022 Clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102, S1–s127 (2022).

ArticleGoogle Scholar

Kar, D. et al. Association of smoking and cardiometabolic parameters with albuminuria in people with type 2 diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol. 56, 839–850 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sanz, A. B. et al. NF-κB in renal inflammation. J. Am. Soc. Nephrol. 21, 1254–1262 (2010).

ArticleCASPubMedGoogle Scholar

Pichler, R., Afkarian, M., Dieter, B. P. & Tuttle, K. R. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Renal Physiol. 312, F716–F731 (2017).

ArticleCASPubMedGoogle Scholar

Lim, Y. J., Sidor, N. A., Tonial, N. C., Che, A. & Urquhart, B. L. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins 13, 142 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Guan, Z., VanBeusecum, J. P. & Inscho, E. W. Endothelin and the renal microcirculation. Semin. Nephrol. 35, 145–155 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Li, H.-D. et al. Roles and crosstalks of macrophages in diabetic nephropathy. Front. Immunol. 13, 1015142 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Qu, L. & Jiao, B. The interplay between immune and metabolic pathways in kidney disease. Cells 12, 1584 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lee, H., Fessler, M. B., Qu, P., Heymann, J. & Kopp, J. B. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol. 21, 270 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Tang, P. C.-T. et al. TGF-β1 signaling: immune dynamics of chronic kidney diseases. Front. Med. 8, 628519 (2021).

ArticleGoogle Scholar

Widjaja, A. A. et al. Targeting endogenous kidney regeneration using anti-IL11 therapy in acute and chronic models of kidney disease. Nat. Commun. 13, 7497 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bekassy, Z., Lopatko Fagerström, I., Bader, M. & Karpman, D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat. Rev. Immunol. 22, 411–428 (2022).

ArticleCASPubMedGoogle Scholar

Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

ArticleCASPubMedGoogle Scholar

Lautrette, A. et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat. Med. 11, 867–874 (2005).

ArticleCASPubMedGoogle Scholar

Townsend, R. R. et al. Association of pulse wave velocity with chronic kidney disease progression and mortality: findings from the CRIC study (Chronic Renal Insufficiency Cohort). Hypertension 71, 1101–1107 (2018).

ArticleCASPubMedGoogle Scholar

Peyster, E. et al. Inflammation and arterial stiffness in chronic kidney disease: findings from the CRIC study. Am. J. Hypertens. 30, 400–408 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Rosner, M. H. et al. Classification of uremic toxins and their role in kidney failure. Clin. J. Am. Soc. Nephrol. 16, 1918–1928 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wang, Y. & Gao, L. Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease. Front. Pharmacol. 13, 800950 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Underwood, C. F. et al. Uraemia: an unrecognized driver of central neurohumoral dysfunction in chronic kidney disease? Acta Physiol. 219, 305–323 (2017).

ArticleCASGoogle Scholar

Sidibé, A. et al. Reduction of arterial stiffness after kidney transplantation: a systematic review and meta-analysis. J. Am. Heart Assoc. 6, e007235 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Menon, V. et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 68, 766–772 (2005).

ArticleCASPubMedGoogle Scholar

Schrauben, S. J. et al. Association of multiple plasma biomarker concentrations with progression of prevalent diabetic kidney disease: findings from the chronic renal insufficiency cohort (CRIC) study. J. Am. Soc. Nephrol. 32, 115–126 (2021).

ArticleCASPubMedGoogle Scholar

Zheng, Z. et al. Subtyping CKD patients by consensus clustering: the chronic renal insufficiency cohort (CRIC) study. J. Am. Soc. Nephrol. 32, 639–653 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Amdur, R. L. et al. Use of measures of inflammation and kidney function for prediction of atherosclerotic vascular disease events and death in patients with CKD: findings from the CRIC study. Am. J. Kidney Dis. 73, 344–353 (2019).

ArticlePubMedGoogle Scholar

He, I. et al. Demystifying the connection between periodontal disease and chronic kidney disease — an umbrella review. J. Periodontal Res. 58, 874–892 (2023).

ArticleCASPubMedGoogle Scholar

Parsegian, K., Randall, D., Curtis, M. & Ioannidou, E. Association between periodontitis and chronic kidney disease. Periodontol. 2000 89, 114–124 (2022).

ArticlePubMedGoogle Scholar

Chen, Y. T. et al. Periodontal disease and risks of kidney function decline and mortality in older people: a community-based cohort study. Am. J. Kidney Dis. 66, 223–230 (2015).

ArticlePubMedGoogle Scholar

Grubbs, V. et al. Association between periodontal disease and kidney function decline in African Americans: the Jackson Heart Study. J. Periodontol. 86, 1126–1132 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Grubbs, V. et al. The association of periodontal disease with kidney function decline: a longitudinal retrospective analysis of the MrOS dental study. Nephrol. Dial. Transpl. 31, 466–472 (2016).

ArticleGoogle Scholar

Ito, S. et al. Porphyromonas gingivalis infection in the oral cavity is associated with elevated galactose-deficient IgA1 and increased nephritis severity in IgA nephropathy. Clin. Exp. Nephrol. 28, 192–200 (2023).

ArticlePubMedGoogle Scholar

Lee, S. et al. Effect of periodontitis induced by Fusobacterium nucleatum on the microbiota of the gut and surrounding organs. Odontology 112, 177–184 (2023).

ArticlePubMedGoogle Scholar

Li, L. et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress. Front. Microbiol. 12, 656372 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Mahendra, J. et al. Impact of red complex bacteria and TNF-α levels on the diabetic and renal status of chronic kidney disease patients in the presence and absence of periodontitis. Biology 11, 451 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Iwasaki, M. et al. Serum antibody to Porphyromonas gingivalis in chronic kidney disease. J. Dent. Res. 91, 828–833 (2012).

ArticleCASPubMedGoogle Scholar

Cachofeiro, V. et al. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. Suppl. S4–9 (2008).

Sharma, P. et al. The periodontal health component of the Renal Impairment In Secondary Care (RIISC) cohort study: a description of the rationale, methodology and initial baseline results. J. Clin. Periodontol. 41, 653–661 (2014).

ArticlePubMedGoogle Scholar

Kirkman, D. L., Muth, B. J., Ramick, M. G., Townsend, R. R. & Edwards, D. G. Role of mitochondria-derived reactive oxygen species in microvascular dysfunction in chronic kidney disease. Am. J. Physiol. Renal Physiol. 314, F423–F429 (2018).

ArticlePubMedGoogle Scholar

Shang, J. X., Liu, H. F., Zheng, Y. L. & Zhang, Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front. Physiol. 14, 1210449 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Chapple, I. L. & Matthews, J. B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol. 2000 43, 160–232 (2007).

ArticlePubMedGoogle Scholar

Chapple, I. L. C., Brock, G., Eftimiadi, C. & Matthews, J. B. Glutathione in gingival crevicular fluid and its relation to local antioxidant capacity in periodontal health and disease. Mol. Pathol. 55, 367–373 (2002).

ArticleCASPubMedPubMed CentralGoogle Scholar

Franca, L. F. C. et al. Periodontitis changes renal structures by oxidative stress and lipid peroxidation. J. Clin. Periodontol. 44, 568–576 (2017).

ArticleCASPubMedGoogle Scholar

Kurt-Bayrakdar, S. et al. Periodontitis exacerbates the renal degenerative effects of obesity in rats. J. Periodontal Res. 56, 1058–1069 (2021).

ArticleCASPubMedGoogle Scholar

Li, X. et al. Resveratrol protects renal damages induced by periodontitis via preventing mitochondrial dysfunction in rats. Oral. Dis. 29, 1812–1825 (2023).

ArticlePubMedGoogle Scholar

Lacson, E. Jr. & Levin, N. W. C-reactive protein and end-stage renal disease. Semin. Dial. 17, 438–448 (2004).

ArticlePubMedGoogle Scholar

Yue, H. et al. Effects of non-surgical periodontal therapy on systemic inflammation and metabolic markers in patients undergoing haemodialysis and/or peritoneal dialysis: a systematic review and meta-analysis. BMC Oral. Health 20, 9 (2020).

ArticleGoogle Scholar

Demmer, R. T. et al. The influence of anti-infective periodontal treatment on C-reactive protein: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 8, 9 (2013).

ArticleGoogle Scholar

Luthra, S. et al. Treatment of periodontitis and C-reactive protein: a systematic review and meta-analysis of randomized clinical trials. J. Clin. Periodontol. 50, 45–60 (2023).

ArticleCASPubMedGoogle Scholar

Zhang, Y. W. et al. Effect of non-surgical periodontal treatment on cytokines/adipocytokines levels among periodontitis patients with or without obesity: a systematic review and meta-analysis. BMC Oral. Health 23, 20 (2023).

ArticleCASGoogle Scholar

Siribamrungwong, M., Yothasamutr, K. & Puangpanngam, K. Periodontal treatment reduces chronic systemic inflammation in peritoneal dialysis patients. Ther. Apher. Dial. 18, 305–308 (2014).

ArticleCASPubMedGoogle Scholar

Gurkan, A. et al. Renin-angiotensin gene polymorphisms in relation to severe chronic periodontitis. J. Clin. Periodontol. 36, 204–211 (2009).

ArticleCASPubMedGoogle Scholar

Santos, C. F. et al. Functional local renin-angiotensin system in human and rat periodontal tissue. PLoS ONE 10, e0134601 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Tsioufis, C., Kasiakogias, A., Thomopoulos, C. & Stefanadis, C. Periodontitis and blood pressure: the concept of dental hypertension. Atherosclerosis 219, 1–9 (2011).

ArticleCASPubMedGoogle Scholar

Boltchi, F. E., Rees, T. D. & Iacopino, A. M. Cyclosporine A-induced gingival overgrowth: a comprehensive review. Quintessence Int. 30, 775–783 (1999).

CASPubMedGoogle Scholar

Chojnacka-Purpurowicz, J., Wygonowska, E., Placek, W. & Owczarczyk-Saczonek, A. Cyclosporine-induced gingival overgrowth-Review. Dermatol. Ther. 35, 5 (2022).

ArticleGoogle Scholar

Drozdzik, A. & Drozdzik, M. Drug-induced gingival overgrowth-molecular aspects of drug actions. Int. J. Mol. Sci. 24, 17 (2023).

ArticleGoogle Scholar

Lauritano, D. et al. Role of cyclosporine in gingival hyperplasia: an in vitro study on gingival fibroblasts. Int. J. Mol. Sci. 21, 13 (2020).

ArticleGoogle Scholar

Almeida, P. A. et al. Salivary metabolic profile of children and adolescents after hemodialysis. Metabolomics 13, 141 (2017).

Andaloro, C., Sessa, C., Bua, N. & La Mantia, I. Chronic kidney disease in children: assessment of oral health status. Dent. Med. Probl. 55, 23–27 (2018).

ArticlePubMedGoogle Scholar

Davidovich, E., Davidovits, M., Peretz, B., Shapira, J. & Aframian, D. J. The correlation between dental calculus and disturbed mineral metabolism in paediatric patients with chronic kidney disease. Nephrol. Dial. Transplant. 24, 2439–2445 (2009).

ArticleCASPubMedGoogle Scholar

Sezer, B. et al. Association between serum biomarkers and oral health status in children with chronic kidney disease: a cross-sectional study. Clin. Oral. Invest. 27, 3731–3740 (2023).

ArticleGoogle Scholar

Sezer, B. et al. Assessment of the oral health status of children with chronic kidney disease. Pediatr. Nephrol. 38, 269–277 (2023).

ArticlePubMedGoogle Scholar

Velan, E. & Sheller, B. Oral health in children with chronic kidney disease. Pediatr. Nephrol. 36, 3067–3075 (2021).

ArticlePubMedGoogle Scholar

Dos Santos, V. C. et al. Prevalence of oral injuries and salivary changes in patients with chronic renal failure on hemodialysis: systematic review and meta-analysis. Biosci. J. 39, 17 (2023).

Google Scholar

Rodrigues, R. et al. Salivary changes in chronic kidney disease and in patients undergoing hemodialysis: a systematic review and meta-analysis. J. Nephrol. 35, 1339–1367 (2022).

ArticleCASPubMedGoogle Scholar

Ruospo, M. et al. Prevalence and severity of oral disease in adults with chronic kidney disease: a systematic review of observational studies. Nephrol. Dial. Transplant. 29, 364–375 (2014).

ArticlePubMedGoogle Scholar

Choi, N. G., Sullivan, J. E., DiNitto, D. M. & Kunik, M. E. Health care utilization among adults with CKD and psychological distress. Kidney Med. 1, 162–170 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Grubbs, V., Plantinga, L. C., Tuot, D. S. & Powe, N. R. Chronic kidney disease and use of dental services in a United States public healthcare system: a retrospective cohort study. BMC Nephrol. 13, 6 (2012).

ArticleGoogle Scholar

Molino, A. R. et al. Health and dental insurance and health care utilization among children, adolescents, and young adults with CKD: findings from the CKiD cohort study. Kidney Med. 4, 12 (2022).

ArticleGoogle Scholar

Lertpimonchai, A. et al. Periodontitis as the risk factor of chronic kidney disease: mediation analysis. J. Clin. Periodontol. 46, 631–639 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Sharma, P. et al. Oxidative stress links periodontal inflammation and renal function. J. Clin. Periodontol. 48, 357–367 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yang, J., Chen, T. Y., Zhu, Y. H., Bai, M. X. & Li, X. G. Causal inference between chronic periodontitis and chronic kidney disease: a bidirectional mendelian randomization analysis in a European population. Front. Genet. 12, 8 (2021).

Google Scholar

Grubbs, V. et al. The Kidney and Periodontal Disease (KAPD) study: a pilot randomized controlled trial testing the effect of non-surgical periodontal therapy on chronic kidney disease. Contemp. Clin. Trials 53, 143–150 (2017).

ArticlePubMedGoogle Scholar

Jamieson, L. et al. Periodontal disease and chronic kidney disease among Aboriginal adults; an RCT. BMC Nephrol. 16, 181 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Sharma, P. et al. INfluence of successful periodontal intervention in REnal disease (INSPIRED): study protocol for a randomised controlled pilot clinical trial. Trials 18, 535 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Grubbs, V. et al. Nonsurgical periodontal therapy in CKD: findings of the kidney and periodontal disease (KAPD) pilot randomized controlled trial. Kidney Med. 2, 49–58 (2020).

ArticlePubMedGoogle Scholar

Jamieson, L. M. et al. Lessons learned from a periodontal intervention to reduce progression of chronic kidney disease among Aboriginal Australians. BMC Res. Notes 13, 483 (2020).

Da Silva, T. A., Abreu, L. G. & Lima, R. P. E. A meta-analysis on the effect of periodontal treatment on the glomerular filtration rate of chronic kidney disease individuals. Spec. Care Dent. 41, 670–678 (2021).

ArticleGoogle Scholar

Chaudhry, A. et al. Potential effects of non-surgical periodontal therapy on periodontal parameters, inflammatory markers, and kidney function indicators in chronic kidney disease patients with chronic periodontitis. Biomedicines 10, 11 (2022).

ArticleGoogle Scholar

Vachhani, K. S. & Bhavsar, N. V. Effects of non-surgical periodontal therapy on serum inflammatory factor high-sensitive C-reactive protein, periodontal parameters and renal biomarkers in patients with chronic periodontitis and chronic kidney disease. Dent. Med. Probl. 58, 489–498 (2021).

ArticlePubMedGoogle Scholar

Artese, H. P. C., Sousa, C. O. D., Luiz, R. R., Sansone, C. & Torres, M. C. M. D. B. Effect of non-surgical periodontal treatment on chronic kidney disease patients. Braz. Oral. Res. 24, 449–454 (2010).

ArticlePubMedGoogle Scholar

Graziani, F. et al. Effects of non-surgical periodontal therapy on the glomerular filtration rate of the kidney: an exploratory trial. J. Clin. Periodontol. 37, 638–643 (2010).

ArticlePubMedGoogle Scholar

Vilela, E. M. et al. Treatment of chronic periodontitis decreases serum prohepcidin levels in patients with chronic kidney disease. Clinics 66, 657–662 (2011).

ArticlePubMedPubMed CentralGoogle Scholar

Almeida, S., Figueredo, C. M., Lemos, C., Bregman, R. & Fischer, R. G. Periodontal treatment in patients with chronic kidney disease: a pilot study. J. Periodontal Res. 52, 262–267 (2017).

ArticleCASPubMedGoogle Scholar

Clerehugh, V., Tugnait, A. & Genco, R. J. Periodontology at a Glance, 2nd edn (Wiley Blackwell, 2024).

Chapple, I. L. C., Gilbert, A. Understanding Periodontal Diseases. (Quintessence, 2003).

Gruber, R., Stadlinger, B. & Terheyden, H. (eds). Cell-to-Cell Communication: Cell-Atlas — Visual Biology in Oral Medicine. (Quintessence Publishing, 2022).

Download references

Author information

Authors and Affiliations

Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK

Iain L. C. Chapple, Josefine Hirschfeld, Thomas Dietrich & Praveen Sharma

NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK

Iain L. C. Chapple, Josefine Hirschfeld, Thomas Dietrich & Praveen Sharma

Department of Nephrology, University Hospital Birmingham, Birmingham, UK

Paul Cockwell

Authors

Iain L. C. Chapple

View author publications

You can also search for this author in PubMedGoogle Scholar

2. Josefine Hirschfeld

View author publications

You can also search for this author in PubMedGoogle Scholar

3. Paul Cockwell

View author publications

You can also search for this author in PubMedGoogle Scholar

4. Thomas Dietrich

View author publications

You can also search for this author in PubMedGoogle Scholar

5. Praveen Sharma

View author publications

You can also search for this author in PubMedGoogle Scholar

Contributions

All authors researched data for the article and wrote the manuscript. I.L.C.C., P.C., T.D. and P.S. made substantial contributions to discussions of the content. I.L.C.C., J.H., P.C. and P.S. reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Iain L. C. Chapple.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Kazuhiko Nakano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Investing gingiva

Specialized mucosal tissue comprising a stromal core with an orthokeratinized stratified squamous epithelial surface that covers and attaches to the alveolar process of the jaw bones.

Periodontal pocket

Pathologically deepened gingival crevice arising owing to apical migration of the junctional epithelial attachment to the enamel of the tooth and in response to dental plaque-induced loss of the periodontal connective tissue attachment to the root and alveolar bone loss.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapple, I.L.C., Hirschfeld, J., Cockwell, P. et al. Interplay between periodontitis and chronic kidney disease. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00910-5

Download citation

Accepted:04 November 2024

Published:10 December 2024

DOI:https://doi.org/10.1038/s41581-024-00910-5

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page