Abstract
Sex and sex hormones are thought to influence multiple sclerosis (MS) through effects on inflammation, myelination and neurodegeneration, and exogenous hormones have been explored for their therapeutic potential. However, our understanding of how sex hormones influence MS disease processes and outcomes remains incomplete. Furthermore, our current knowledge is derived primarily from studies that focus exclusively on cisgender populations with exclusion of gender-diverse people. Gender-affirming hormone therapy comprising exogenous sex hormones or sex hormone blocking agents are commonly used by transgender and gender-diverse individuals, and it could influence MS risk and outcomes at various stages of disease. A better understanding of the impact and potential therapeutic effects of both endogenous and exogenous sex hormones in MS is needed to improve care and outcomes for cisgender individuals and, moreover, for gender-diverse populations wherein an evidence base does not exist. In this Perspective, we discuss the effects of endogenous and exogenous sex hormones in MS, including their potential therapeutic benefits, and examine both established sex-based dimorphisms and the potential for gender-diverse dimorphisms. We advocate for future research that includes gender-diverse people to enhance our knowledge of the interplay of sex and sex hormones in MS, leading to the development of more effective and inclusive treatment strategies and improvement of care for all individuals with MS.
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Change institution
Buy or subscribe
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Learn more
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Sex hormone receptors and the immune system.
Fig. 2: The neuroprotective role of sex hormone receptors in MS.
Fig. 3: Gender-affirming therapy.
References
Ahlgren, C., Odén, A. & Lycke, J. High nationwide prevalence of multiple sclerosis in Sweden. Mult. Scler. 17, 901–908 (2011).
ArticleCASPubMedGoogle Scholar
Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).
ArticleCASPubMedGoogle Scholar
Khayambashi, S. et al. Gender identity and sexual orientation affect health care satisfaction, but not utilization, in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 37, 101440 (2020).
ArticlePubMedGoogle Scholar
Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).
ArticlePubMedPubMed CentralGoogle Scholar
Nolan, B. J., Zwickl, S., Locke, P., Zajac, J. D. & Cheung, A. S. Early access to testosterone therapy in transgender and gender-diverse adults seeking masculinization: a randomized clinical trial. JAMA Netw. Open 6, e2331919 (2023).
ArticlePubMedPubMed CentralGoogle Scholar
van Leerdam, T. R., Zajac, J. D. & Cheung, A. S. The effect of gender-affirming hormones on gender dysphoria, quality of life, and psychological functioning in transgender individuals: a systematic review. Transgend. Health 8, 6–21 (2023).
ArticlePubMedPubMed CentralGoogle Scholar
Zwickl, S. et al. Health needs of trans and gender diverse adults in Australia: a qualitative analysis of a national community survey. Int. J. Environ. Res. Public Health 16, 5088 (2019).
ArticlePubMedPubMed CentralGoogle Scholar
Bretherton, I. et al. The health and well-being of transgender Australians: a national community survey. LGBT Health 8, 42–49 (2021).
ArticlePubMedPubMed CentralGoogle Scholar
Houssayni, S. & Nilsen, K. Transgender competent provider: identifying transgender health needs, health disparities, and health coverage. Kans. J. Med. 11, 1–18 (2018).
PubMedGoogle Scholar
Rosendale, N., Goldman, S., Ortiz, G. M. & Haber, L. A. Acute clinical care for transgender patients: a review. JAMA Intern. Med. 178, 1535–1543 (2018).
ArticlePubMedGoogle Scholar
Cheung, A. S. et al. Sociodemographic and clinical characteristics of transgender adults in Australia. Transgend. Health 3, 229–238 (2018).
ArticlePubMedPubMed CentralGoogle Scholar
Safer, J. D. Research gaps in medical treatment of transgender/nonbinary people. J. Clin. Invest. 131, e142029 (2021).
ArticleCASPubMedPubMed CentralGoogle Scholar
Hsu, S. & Bove, R. Hormonal therapies in multiple sclerosis: a review of clinical data. Curr. Neurol. Neurosci. Rep. 24, 1–15 (2024).
ArticleCASPubMedGoogle Scholar
Ysrraelit, M. C. & Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 156, 9–22 (2019).
ArticleCASPubMedGoogle Scholar
Moulton, V. R. Sex hormones in acquired immunity and autoimmune disease. Front. Immunol. 9, 2279 (2018).
ArticlePubMedPubMed CentralGoogle Scholar
Brundin, P. M. A. et al. Expression of sex hormone receptor and immune response genes in peripheral blood mononuclear cells during the menstrual cycle. Front. Endocrinol. 12, 721813 (2021).
ArticleGoogle Scholar
Psenicka, M. W., Smith, B. C., Tinkey, R. A. & Williams, J. L. Connecting neuroinflammation and neurodegeneration in multiple sclerosis: are oligodendrocyte precursor cells a nexus of disease? Front. Cell Neurosci. 15, 654284 (2021).
ArticleCASPubMedPubMed CentralGoogle Scholar
Attfield, K. E., Jensen, L. T., Kaufmann, M., Friese, M. A. & Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734–750 (2022).
ArticleCASPubMedGoogle Scholar
Ribbons, K., Lea, R., Tiedeman, C., Mackenzie, L. & Lechner-Scott, J. Ongoing increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 50-year study. Mult. Scler. 23, 1063–1071 (2017).
ArticlePubMedGoogle Scholar
Westerlind, H. et al. New data identify an increasing sex ratio of multiple sclerosis in Sweden. Mult. Scler. 20, 1578–1583 (2014).
ArticlePubMedPubMed CentralGoogle Scholar
Trojano, M. et al. Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS ONE 7, e48078 (2012).
ArticleCASPubMedPubMed CentralGoogle Scholar
Chitnis, T. Role of puberty in multiple sclerosis risk and course. Clin. Immunol. 149, 192–200 (2013).
ArticleCASPubMedGoogle Scholar
Harroud, A. et al. Effect of age at puberty on risk of multiple sclerosis: a Mendelian randomization study. Neurology 92, e1803–e1810 (2019).
ArticlePubMedPubMed CentralGoogle Scholar
Kalincik, T. et al. Risk of relapse phenotype recurrence in multiple sclerosis. Mult. Scler. 20, 1511–1522 (2014).
ArticlePubMedGoogle Scholar
Pozzilli, C. et al. Gender gap’ in multiple sclerosis: magnetic resonance imaging evidence. Eur. J. Neurol. 10, 95–97 (2003).
ArticleCASPubMedGoogle Scholar
Weatherby, S. J. et al. A pilot study of the relationship between gadolinium-enhancing lesions, gender effect and polymorphisms of antioxidant enzymes in multiple sclerosis. J. Neurol. 247, 467–470 (2000).
ArticleCASPubMedGoogle Scholar
Pelfrey, C. M., Cotleur, A. C., Lee, J. C. & Rudick, R. A. Sex differences in cytokine responses to myelin peptides in multiple sclerosis. J. Neuroimmunol. 130, 211–223 (2002).
ArticleCASPubMedGoogle Scholar
Moldovan, I. R., Cotleur, A. C., Zamor, N., Butler, R. S. & Pelfrey, C. M. Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens. J. Neuroimmunol. 193, 161–169 (2008).
ArticleCASPubMedGoogle Scholar
Greer, J. M., Csurhes, P. A., Pender, M. P. & McCombe, P. A. Effect of gender on T-cell proliferative responses to myelin proteolipid protein antigens in patients with multiple sclerosis and controls. J. Autoimmun. 22, 345–352 (2004).
ArticleCASPubMedGoogle Scholar
Glad, S. B., Nyland, H. I., Aarseth, J. H., Riise, T. & Myhr, K. M. Long-term follow-up of benign multiple sclerosis in Hordaland County, Western Norway. Mult. Scler. 15, 942–950 (2009).
ArticleCASPubMedGoogle Scholar
Koch, M., Kingwell, E., Rieckmann, P. & Tremlett, H. The natural history of secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 1039–1043 (2010).
ArticlePubMedGoogle Scholar
Wolfson, C. & Confavreux, C. A Markov model of the natural history of multiple sclerosis. Neuroepidemiology 4, 227–239 (1985).
ArticleCASPubMedGoogle Scholar
Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome. Brain 114, 1045–1056 (1991).
ArticlePubMedGoogle Scholar
Runmarker, B. & Andersen, O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 116, 117–134 (1993).
ArticlePubMedGoogle Scholar
Bove, R. M. et al. Effect of gender on late-onset multiple sclerosis. Mult. Scler. 18, 1472–1479 (2012).
ArticlePubMedGoogle Scholar
Tintore, M. & Tur, C. Understanding the role of gender and hormones in multiple sclerosis. Mult. Scler. J. 20, 518–519 (2014).
ArticleGoogle Scholar
Millar, J. H. The influence of pregnancy on disseminated sclerosis. Proc. R. Soc. Med. 54, 4–7 (1961).
CASPubMedPubMed CentralGoogle Scholar
Achiron, A. et al. Parity and disability progression in relapsing-remitting multiple sclerosis. J. Neurol. 267, 3753–3762 (2020).
ArticlePubMedGoogle Scholar
Jokubaitis, V. G. et al. Predictors of long-term disability accrual in relapse-onset multiple sclerosis. Ann. Neurol. 80, 89–100 (2016).
ArticlePubMedGoogle Scholar
McCombe, P. A. & Greer, J. M. Female reproductive issues in multiple sclerosis. Mult. Scler. J. 19, 392–402 (2013).
ArticleCASGoogle Scholar
Robinson, G. A. et al. Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: a cross-sectional study. Lancet Rheumatol. 4, e710–e724 (2022).
ArticleCASPubMedPubMed CentralGoogle Scholar
Brunton, P. J. & Russell, J. A. Endocrine induced changes in brain function during pregnancy. Brain Res. 1364, 198–215 (2010).
ArticleCASPubMedGoogle Scholar
Cole, J. H. et al. Longitudinal assessment of multiple sclerosis with the brain-age paradigm. Ann. Neurol. 88, 93–105 (2020).
ArticlePubMedGoogle Scholar
Campagna, M. P. et al. Conceiving complexity: biological mechanisms underpinning the lasting effect of pregnancy on multiple sclerosis outcomes. Autoimmun. Rev. 22, 103388 (2023).
ArticleCASPubMedGoogle Scholar
Yeh, W. Z. et al. Natalizumab, fingolimod and dimethyl fumarate use and pregnancy-related relapse and disability in women with multiple sclerosis. Neurology 96, e2989–e3002 (2021).
ArticleCASPubMedPubMed CentralGoogle Scholar
Gavoille, A. et al. Investigating the long-term effect of pregnancy on the course of multiple sclerosis using causal inference. Neurology 100, e1296–e1308 (2023).
ArticleCASPubMedPubMed CentralGoogle Scholar
Hansberg-Pastor, V., González-Arenas, A., Piña-Medina, A. G. & Camacho-Arroyo, I. Sex hormones regulate cytoskeletal proteins involved in brain plasticity. Front. Psychiatry 6, 165 (2015).
ArticlePubMedPubMed CentralGoogle Scholar
Barth, C., Villringer, A. & Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 9, 37 (2015).
ArticlePubMedPubMed CentralGoogle Scholar
Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).
ArticleCASPubMedGoogle Scholar
Marschallinger, R. et al. Geostatistical analysis of white matter lesions in multiple sclerosis identifies gender differences in lesion evolution. Front. Mol. Neurosci. 11, 460 (2018).
ArticlePubMedPubMed CentralGoogle Scholar
Fazekas, F. et al. Gender differences in MRI studies on multiple sclerosis. J. Neurol. Sci. 286, 28–30 (2009).
ArticlePubMedGoogle Scholar
Voskuhl, R. R. et al. Sex differences in brain atrophy in multiple sclerosis. Biol. Sex. Differ. 11, 49 (2020).
ArticlePubMedPubMed CentralGoogle Scholar
Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).
ArticleCASPubMedPubMed CentralGoogle Scholar
Rommer, P. S. et al. Relapsing and progressive MS: the sex-specific perspective. Ther. Adv. Neurol. Disord. 13, 1756286420956495 (2020).
ArticleCASPubMedPubMed CentralGoogle Scholar
Savettieri, G. et al. Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J. Neurol. 251, 1208–1214 (2004).
ArticlePubMedGoogle Scholar
Luetic, G. G. et al. Clinical and demographic characteristics of male MS patients included in the national registry — RelevarEM. Does sex or phenotype make the difference in the association with poor prognosis? Mult. Scler. Relat. Disord. 58, 103401 (2022).
ArticlePubMedGoogle Scholar
Wilkins, A. Cerebellar dysfunction in multiple sclerosis. Front. Neurol. 8, 312 (2017).
ArticlePubMedPubMed CentralGoogle Scholar
Tomassini, V. et al. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J. Neurol. Neurosurg. Psychiatry 76, 272–275 (2005).
ArticleCASPubMedPubMed CentralGoogle Scholar
Spence, R. D. & Voskuhl, R. R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front. Neuroendocrinol. 33, 105–115 (2012).
ArticleCASPubMedGoogle Scholar
Thakolwiboon, S. et al. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. Front. Aging 4, 1234572 (2023).
ArticlePubMedPubMed CentralGoogle Scholar
Caruso, C., Accardi, G., Virruso, C. & Candore, G. Sex, gender and immunosenescence: a key to understand the different lifespan between men and women? Immun. Ageing 10, 20 (2013).
ArticlePubMedPubMed CentralGoogle Scholar
Kalincik, T. et al. Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain 136, 3609–3617 (2013).
ArticlePubMedGoogle Scholar
Cheung, A. S., Wynne, K., Erasmus, J., Murray, S. & Zajac, J. D. Position statement on the hormonal management of adult transgender and gender diverse individuals. Med. J. Aust. 211, 127–133 (2019).
ArticlePubMedGoogle Scholar
Bove, R. et al. Oral contraceptives and MS disease activity in a contemporary real-world cohort. Mult. Scler. J. 24, 227–230 (2018).
ArticleGoogle Scholar
Otero-Romero, S. et al. Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis. Mult. Scler. J. 28, 950–957 (2022).
ArticleCASGoogle Scholar
Chen, C. S. et al. Comparison of MS inflammatory activity in women using continuous versus cyclic combined oral contraceptives. Mult. Scler. Relat. Disord. 41, 101970 (2020).
ArticlePubMedGoogle Scholar
Pozzilli, C. et al. Oral contraceptives combined with interferon β in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2, e120 (2015).
ArticlePubMedPubMed CentralGoogle Scholar
Seifert, H. A. et al. Estrogen protects both sexes against EAE by promoting common regulatory cell subtypes independent of endogenous estrogen. Metab. Brain Dis. 32, 1747–1754 (2017).
ArticleCASPubMedPubMed CentralGoogle Scholar
Sicotte, N. L. et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol. 52, 421–428 (2002).
ArticleCASPubMedGoogle Scholar
Voskuhl, R. R. et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 35–46 (2016).
ArticleCASPubMedGoogle Scholar
Voskuhl, R. et al. Decreased neurofilament light chain levels in estriol-treated multiple sclerosis. Ann. Clin. Transl. Neurol. 9, 1316–1320 (2022).
ArticleCASPubMedPubMed CentralGoogle Scholar
Soldan, S. S., Alvarez Retuerto, A. I., Sicotte, N. L. & Voskuhl, R. R. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J. Immunol. 171, 6267–6274 (2003).
ArticleCASPubMedGoogle Scholar
MacKenzie-Graham, A. et al. Estriol-mediated neuroprotection in multiple sclerosis localized by voxel-based morphometry. Brain Behav. 8, e01086 (2018).
ArticlePubMedPubMed CentralGoogle Scholar
Støer, N. C. et al. Menopausal hormone therapy and breast cancer risk: a population-based cohort study of 1.3 million women in Norway. Br. J. Cancer 131, 126–137 (2024).
ArticlePubMedPubMed CentralGoogle Scholar
Gold, S. M. & Voskuhl, R. R. Estrogen and testosterone therapies in multiple sclerosis. Prog. Brain Res. 175, 239–251 (2009).
ArticleCASPubMedPubMed CentralGoogle Scholar
Takahashi, K. et al. Safety and efficacy of oestriol for symptoms of natural or surgically induced menopause. Hum. Reprod. 15, 1028–1036 (2000).
ArticleCASPubMedGoogle Scholar
Bridge, F., Butzkueven, H., Van der Walt, A. & Jokubaitis, V. G. The impact of menopause on multiple sclerosis. Autoimmun. Rev. 22, 103363 (2023).
ArticlePubMedGoogle Scholar
Guo, H. et al. The critical period for neuroprotection by estrogen replacement therapy and the potential underlying mechanisms. Curr. Neuropharmacol. 18, 485–500 (2020).
ArticleCASPubMedPubMed CentralGoogle Scholar
Lord, C., Buss, C., Lupien, S. J. & Pruessner, J. C. Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neurobiol. Aging 29, 95–101 (2008).
ArticleCASPubMedGoogle Scholar
Coughlan, G. T. et al. Association of age at menopause and hormone therapy use with tau and β-amyloid positron emission tomography. JAMA Neurol. 80, 462–473 (2023).
ArticlePubMedPubMed CentralGoogle Scholar
Bove, R. et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82, 222–229 (2014).
ArticlePubMedPubMed CentralGoogle Scholar
Shumaker, S. A. et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2947–2958 (2004).
ArticleCASPubMedGoogle Scholar
Espeland, M. A. et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern. Med. 173, 1429–1436 (2013).
ArticlePubMedGoogle Scholar
Gleason, C. E. et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-Cognitive and Affective Study. PLoS Med. 12, e1001833 (2015).
ArticlePubMedPubMed CentralGoogle Scholar
Davison, S. L. et al. Continuous-combined oral estradiol/drospirenone has no detrimental effect on cognitive performance and improves estrogen deficiency symptoms in early postmenopausal women: a randomized placebo-controlled trial. Menopause 20, 1020–1026 (2013).
ArticlePubMedGoogle Scholar
Hodis, H. N. et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N. Engl. J. Med. 374, 1221–1231 (2016).
ArticleCASPubMedPubMed CentralGoogle Scholar
Bove, R. et al. Hormone therapy use and physical quality of life in postmenopausal women with multiple sclerosis. Neurology 87, 1457–1463 (2016).
ArticleCASPubMedPubMed CentralGoogle Scholar
Bove, R. et al. Patients report worse MS symptoms after menopause: findings from an online cohort. Mult. Scler. Relat. Disord. 4, 18–24 (2015).
ArticleCASPubMedGoogle Scholar
Kopp, T. I., Lidegaard, Ø. & Magyari, M. Hormone therapy and disease activity in Danish women with multiple sclerosis: a population-based cohort study. Eur. J. Neurol. 29, 1753–1762 (2022).
ArticlePubMedGoogle Scholar
Bove, R. et al. A hormonal therapy for menopausal women with MS: a phase Ib/IIa randomized controlled trial. Mult. Scler. Relat. Disord. 61, 103747 (2022).
ArticleCASPubMedGoogle Scholar
Juutinen, L., Ahinko, K., Tinkanen, H., Rosti-Otajärvi, E. & Sumelahti, M.-L. Menopausal symptoms and hormone therapy in women with multiple sclerosis: a baseline-controlled study. Mult. Scler. Relat. Disord. 67, 104098 (2022).
ArticleCASPubMedGoogle Scholar
DonCarlos, L. L., Azcoitia, I. & Garcia-Segura, L. M. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 34, S113–S122 (2009).
ArticleCASPubMedGoogle Scholar
Khan, M. M., Wakade, C., de Sevilla, L. & Brann, D. W. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J. Steroid Biochem. Mol. Biol. 146, 38–47 (2015).
ArticleCASPubMedGoogle Scholar
Arevalo, M. A., Santos-Galindo, M., Lagunas, N., Azcoitia, I. & Garcia-Segura, L. M. Selective estrogen receptor modulators as brain therapeutic agents. J. Mol. Endocrinol. 46, R1–R9 (2011).
ArticleCASPubMedGoogle Scholar
Newhouse, P. et al. Tamoxifen improves cholinergically modulated cognitive performance in postmenopausal women. Neuropsychopharmacology 38, 2632–2643 (2013).
ArticleCASPubMedPubMed CentralGoogle Scholar
Liao, K.-F., Lin, C.-L. & Lai, S.-W. Nationwide case-control study examining the association between tamoxifen use and Alzheimer’s disease in aged women with breast cancer in Taiwan. Front. Pharmacol. 8, 295503 (2017).
ArticleGoogle Scholar
Underwood, E. et al. Cognitive sequelae of endocrine therapy in women treated for breast cancer: a meta-analysis. Breast Cancer Res. Treat. 168, 299–310 (2018).
ArticleCASPubMedGoogle Scholar
Branigan, G. L., Soto, M., Neumayer, L., Rodgers, K. & Brinton, R. D. Association between hormone-modulating breast cancer therapies and incidence of neurodegenerative outcomes for women with breast cancer. JAMA Netw. Open 3, e201541 (2020).
ArticlePubMedPubMed CentralGoogle Scholar
Rankin, K. A. et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors. J. Neurosci. 39, 2184–2194 (2019).
ArticlePubMedPubMed CentralGoogle Scholar
Gonzalez, G. A. et al. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system. Sci. Rep. 6, 31599 (2016).
ArticleCASPubMedPubMed CentralGoogle Scholar
Nylander, A. et al. Re-WRAP (remyelination for women at risk of axonal loss and progression): a phase II randomized placebo-controlled delayed-start trial of bazedoxifene for myelin repair in multiple sclerosis. Contemp. Clin. Trials 134, 107333 (2023).
ArticlePubMedGoogle Scholar
Mendell, A. L. & MacLusky, N. J. Neurosteroid metabolites of gonadal steroid hormones in neuroprotection: implications for sex differences in neurodegenerative disease. Front. Mol. Neurosci. 11, 359 (2018).
ArticleCASPubMedPubMed CentralGoogle Scholar
Jure, I., De Nicola, A. F. & Labombarda, F. Progesterone effects on the oligodendrocyte linage: all roads lead to the progesterone receptor. Neural Regen. Res. 14, 2029–2034 (2019).
ArticleCASPubMedPubMed CentralGoogle Scholar
Bansil, S., Lee, H. J., Jindal, S., Holtz, C. R. & Cook, S. D. Correlation between sex hormones and magnetic resonance imaging lesions in multiple sclerosis. Acta Neurol. Scand. 99, 91–94 (1999).
ArticleCASPubMedGoogle Scholar
Labombarda, F. et al. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp. Neurol. 231, 135–146 (2011).
ArticleCASPubMedGoogle Scholar
Costanza, M. & Pedotti, R. Prolactin: friend or foe in central nervous system autoimmune inflammation? Int. J. Mol. Sci. 17, 2026 (2016).
ArticlePubMedPubMed CentralGoogle Scholar
Gregg, C. et al. White matter plasticity and enhanced remyelination in the maternal CNS. J. Neurosci. 27, 1812 (2007).
ArticleCASPubMedPubMed CentralGoogle Scholar
Duc Nguyen, H. et al. Association between serum prolactin levels and neurodegenerative diseases: systematic review and meta-analysis. Neuroimmunomodulation 29, 85–96 (2022).
ArticleCASPubMedGoogle Scholar
Zhornitsky, S., Yong, V. W., Weiss, S. & Metz, L. M. Prolactin in multiple sclerosis. Mult. Scler. 19, 15–23 (2013).
ArticlePubMedGoogle Scholar
Bissay, V. et al. Bromocriptine therapy in multiple sclerosis: an open label pilot study. Clin. Neuropharmacol. 17, 473–476 (1994).
ArticleCASPubMedGoogle Scholar
Pakpoor, J. et al. Breastfeeding and multiple sclerosis relapses: a meta-analysis. J. Neurol. 259, 2246–2248 (2012).
ArticlePubMedGoogle Scholar
Van Der Walt, A., Nguyen, A.-L. & Jokubaitis, V. Family planning, antenatal and post partum care in multiple sclerosis: a review and update. Med. J. Aust. 211, 230–236 (2019).
ArticlePubMedGoogle Scholar
Son, S. W. et al. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J. Neurochem. 136, 106–117 (2016).
ArticleCASPubMedGoogle Scholar
Meydan, S. et al. Effects of testosterone on orchiectomy-induced oxidative damage in the rat hippocampus. J. Chem. Neuroanat. 40, 281–285 (2010).
ArticleCASPubMedGoogle Scholar
Ziehn, M. O. et al. Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J. Neurosci. 32, 12312–12324 (2012).
ArticleCASPubMedPubMed CentralGoogle Scholar
Hussain, R. et al. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136, 132–146 (2013).
ArticlePubMedPubMed CentralGoogle Scholar
Bove, R. et al. Low testosterone is associated with disability in men with multiple sclerosis. Mult. Scler. 20, 1584–1592 (2014).
ArticleCASPubMedPubMed CentralGoogle Scholar
Hammad, M. A. M. et al. Multiple sclerosis and hypogonadism: is there a relationship? Sex. Med. Rev. 12, 178–182 (2024).
ArticlePubMedGoogle Scholar
Chitnis, T. The role of testosterone in MS risk and course. Mult. Scler. 24, 36–41 (2018).
ArticleCASPubMedGoogle Scholar
Sicotte, N. L. et al. Testosterone treatment in multiple sclerosis: a pilot study. Arch. Neurol. 64, 683–688 (2007).
ArticlePubMedGoogle Scholar
Kurth, F. et al. Neuroprotective effects of testosterone treatment in men with multiple sclerosis. Neuroimage Clin. 4, 454–460 (2014).
ArticlePubMedPubMed CentralGoogle Scholar
Gold, S. M., Chalifoux, S., Giesser, B. S. & Voskuhl, R. R. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J. Neuroinflamm . 5, 32 (2008).
ArticleGoogle Scholar
Metzger-Peter, K. et al. The TOTEM RRMS (Testosterone Treatment on neuroprotection and Myelin Repair in Relapsing Remitting Multiple Sclerosis) trial: study protocol for a randomized, double-blind, placebo-controlled trial. Trials 21, 591 (2020).
ArticleCASPubMedPubMed CentralGoogle Scholar
Triantafyllou, N. et al. Association of sex hormones and glucose metabolism with the severity of multiple sclerosis. Int. J. Neurosci. 126, 797–804 (2016).
ArticleCASPubMedGoogle Scholar
Bove, R. et al. Effect of assisted reproductive technology on multiple sclerosis relapses: case series and meta-analysis. Mult. Scler. 26, 1410–1419 (2020).
ArticlePubMedGoogle Scholar
Mainguy, M. et al. Assessing the risk of relapse requiring corticosteroids after in vitro fertilization in women with multiple sclerosis. Neurology 99, e1916–e1925 (2022).
ArticleCASPubMedGoogle Scholar
Graham, E. L. et al. Inflammatory activity after diverse fertility treatments: a multicenter analysis in the modern multiple sclerosis treatment era. Neurol. Neuroimmunol. Neuroinflamm. 10, e200106 (2023).
ArticlePubMedPubMed CentralGoogle Scholar
Nolan, B. J. & Cheung, A. S. Gender-affirming hormone therapy for transgender and gender-diverse adults in Australia. Intern. Med. J. 54, 1450–1457 (2024).
ArticleCASPubMedGoogle Scholar
Coleman, E. et al. Standards of Care for the health of transgender and gender diverse people, version 8. Int. J. Transgend. Health 23 (Suppl. 1), S1–S259 (2022).
ArticleCASPubMedPubMed CentralGoogle Scholar
Bianchi, I., Lleo, A., Gershwin, M. E. & Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).
ArticleCASPubMedGoogle Scholar
International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).
ArticlePubMed CentralGoogle Scholar
Piatek, P. et al. Multiple sclerosis CD49d+CD154+ as myelin-specific lymphocytes induced during remyelination. Cells 9, 15 (2020).
ArticleCASGoogle Scholar
Shepherd, R. et al. Gender-affirming hormone therapy induces specific DNA methylation changes in blood. Clin. Epigenet. 14, 24 (2022).
ArticleCASGoogle Scholar
Giltay, E. J. et al. In vivo effects of sex steroids on lymphocyte responsiveness and immunoglobulin levels in humans. J. Clin. Endocrinol. Metab. 85, 1648–1657 (2000).
ArticleCASPubMedGoogle Scholar
Giltay, E. J., Gooren, L. J., Emeis, J. J., Kooistra, T. & Stehouwer, C. D. Oral ethinyl estradiol, but not transdermal 17beta-estradiol, increases plasma C-reactive protein levels in men. Thromb. Haemost. 84, 359–360 (2000).
ArticleCASPubMedGoogle Scholar
Landry, A., Docherty, P., Ouellette, S. & Cartier, L. J. Causes and outcomes of markedly elevated C-reactive protein levels. Can. Fam. Physician 63, e316–e323 (2017).
PubMedPubMed CentralGoogle Scholar
Giltay, E. J. et al. The sex difference of plasma homovanillic acid is unaffected by cross-sex hormone administration in transsexual subjects. J. Endocrinol. 187, 109–116 (2005).
ArticleCASPubMedGoogle Scholar
Nie, J., Li, Y. Y., Zheng, S. G., Tsun, A. & Li, B. FOXP3+ Treg cells and gender bias in autoimmune diseases. Front. Immunol. 6, 493 (2015).
ArticlePubMedPubMed CentralGoogle Scholar
Dejaco, C., Duftner, C., Grubeck-Loebenstein, B. & Schirmer, M. Imbalance of regulatory T cells in human autoimmune diseases. Immunology 117, 289–300 (2006).
ArticleCASPubMedPubMed CentralGoogle Scholar
Ramos, S., Ingenito, F., Mormandi, E., Nagelberg, A. & Otero, P. High prevalence of altered immunological biomarkers in a transgender population. Autoimmun. Infect. Dis. https://doi.org/10.16966/2470-1025.125 (2020).
White, A. A. et al. Potential immunological effects of gender-affirming hormone therapy in transgender people — an unexplored area of research. Ther. Adv. Endocrinol. Metab. 13, 20420188221139612 (2022).
ArticleCASPubMedPubMed CentralGoogle Scholar
Schutte, M. H. et al. The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLoS ONE 17, e0261312 (2022).
ArticleCASPubMedPubMed CentralGoogle Scholar
Gooren, L. J., Kreukels, B., Lapauw, B. & Giltay, E. J. (Patho)physiology of cross-sex hormone administration to transsexual people: the potential impact of male-female genetic differences. Andrologia 47, 5–19 (2015).
ArticleCASPubMedGoogle Scholar
Butterworth, M., McClellan, B. & Allansmith, M. Influence of sex in immunoglobulin levels. Nature 214, 1224–1225 (1967).
ArticleCASPubMedGoogle Scholar
Stoop, J. W., Zegers, B. J., Sander, P. C. & Ballieux, R. E. Serum immunoglobulin levels in healthy children and adults. Clin. Exp. Immunol. 4, 101–112 (1969).
CASPubMedPubMed CentralGoogle Scholar
Pakpoor, J., Wotton, C. J., Schmierer, K., Giovannoni, G. & Goldacre, M. J. Gender identity disorders and multiple sclerosis risk: a national record-linkage study. Mult. Scler. 22, 1759–1762 (2016).
ArticlePubMedGoogle Scholar
Miles, C., Green, R., Sanders, G. & Hines, M. Estrogen and memory in a transsexual population. Horm. Behav. 34, 199–208 (1998).
ArticleCASPubMedGoogle Scholar
Kranz, G. S. et al. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals. Brain Struct. Funct. 223, 321–328 (2018).
ArticleCASPubMedGoogle Scholar
Zubiaurre-Elorza, L., Junque, C., Gómez-Gil, E. & Guillamon, A. Effects of cross-sex hormone treatment on cortical thickness in transsexual individuals. J. Sex. Med. 11, 1248–1261 (2014).
ArticleCASPubMedGoogle Scholar
Lavorgna, L. et al. Health-care disparities stemming from sexual orientation of Italian patients with multiple sclerosis: a cross-sectional web-based study. Mult. Scler. Relat. Disord. 13, 28–32 (2017).
ArticlePubMedGoogle Scholar
White Hughto, J. M., Reisner, S. L. & Pachankis, J. E. Transgender stigma and health: a critical review of stigma determinants, mechanisms, and interventions. Soc. Sci. Med. 147, 222–231 (2015).
ArticlePubMedPubMed CentralGoogle Scholar
Conron, K. J., Mimiaga, M. J. & Landers, S. J. A population-based study of sexual orientation identity and gender differences in adult health. Am. J. Public Health 100, 1953–1960 (2010).
ArticlePubMedPubMed CentralGoogle Scholar
Flower, L. et al. Management of transgender patients in critical care. J. Intensive Care Soc. 24, 320–327 (2023).
ArticlePubMedGoogle Scholar
Anderson, A. et al. Experiences of sexual and gender minority people living with multiple sclerosis in Northern California: an exploratory study. Mult. Scler. Relat. Disord. 55, 103214 (2021).
ArticlePubMedGoogle Scholar
James, S. et al. The report of the 2015 US Transgender Survey (National Center for Transgender Equality, 2016).
Rosendale, N. et al. American Academy of Neurology members’ preparedness to treat sexual and gender minorities. Neurology 93, 159–166 (2019).
ArticlePubMedGoogle Scholar
Rosendale, N., Wong, J. O., Flatt, J. D. & Whitaker, E. Sexual and gender minority health in neurology: a scoping review. JAMA Neurol. 78, 747–754 (2021).
ArticlePubMedPubMed CentralGoogle Scholar
Marrie, R. A. et al. Etiology, effects and management of comorbidities in multiple sclerosis: recent advances. Front. Immunol. 14, 1197195 (2023).
ArticleCASPubMedPubMed CentralGoogle Scholar
Hobart, J. et al. International consensus on quality standards for brain health-focused care in multiple sclerosis. Mult. Scler. 25, 1809–1818 (2019).
ArticlePubMedGoogle Scholar
Dispenza, F., Harper, L. S. & Harrigan, M. A. Subjective health among LGBT persons living with disabilities: a qualitative content analysis. Rehabil. Psychol. 61, 251–259 (2016).
ArticlePubMedGoogle Scholar
Huo, S. et al. Brain health outcomes in sexual and gender minority groups. Neurology 103, e209863 (2024).
ArticlePubMedGoogle Scholar
Yarns, B. C., Abrams, J. M., Meeks, T. W. & Sewell, D. D. The mental health of older LGBT adults. Curr. Psychiatry Rep. 18, 60 (2016).
ArticlePubMedGoogle Scholar
Minnis, A. M. et al. Differences in chronic disease behavioral indicators by sexual orientation and sex. J. Public Health Manag. Pract. 22, S25–S32 (2016).
ArticlePubMedPubMed CentralGoogle Scholar
Daniel, H. & Butkus, R. Lesbian, gay, bisexual, and transgender health disparities: executive summary of a policy position paper from the American College of Physicians. Ann. Intern. Med. 163, 135–137 (2015).
ArticlePubMedGoogle Scholar
Dragon, C. N., Guerino, P., Ewald, E. & Laffan, A. M. Transgender Medicare beneficiaries and chronic conditions: exploring fee-for-service claims data. LGBT Health 4, 404–411 (2017).
ArticlePubMedPubMed CentralGoogle Scholar
Warrier, V. et al. Elevated rates of autism, other neurodevelopmental and psychiatric diagnoses, and autistic traits in transgender and gender-diverse individuals. Nat. Commun. 11, 3959 (2020).
ArticleCASPubMedPubMed CentralGoogle Scholar
Strang, J. F. et al. Revisiting the link: evidence of the rates of autism in studies of gender diverse individuals. J. Am. Acad. Child Adolesc. Psychiatry 57, 885–887 (2018).
ArticlePubMedGoogle Scholar
Thrower, E., Bretherton, I., Pang, K. C., Zajac, J. D. & Cheung, A. S. Prevalence of autism spectrum disorder and attention-deficit hyperactivity disorder amongst individuals with gender dysphoria: a systematic review. J. Autism Dev. Disord. 50, 695–706 (2020).
ArticlePubMedGoogle Scholar
Melamed, E. & Lee, M. W. Multiple sclerosis and cancer: the Ying-Yang effect of disease modifying therapies. Front. Immunol. 10, 2954 (2019).
ArticleCASPubMedGoogle Scholar
Sterling, J. & Garcia, M. M. Cancer screening in the transgender population: a review of current guidelines, best practices, and a proposed care model. Transl. Androl. Urol. 9, 2771–2785 (2020).
ArticlePubMedPubMed CentralGoogle Scholar
Leszek, J. et al. The links between cardiovascular diseases and Alzheimer’s disease. Curr. Neuropharmacol. 19, 152–169 (2021).
ArticleCASPubMedPubMed CentralGoogle Scholar
Mincu, R. I. et al. Cardiovascular dysfunction in multiple sclerosis. Maedica 10, 364–370 (2015).
PubMedPubMed CentralGoogle Scholar
Rexrode, K. M. et al. The impact of sex and gender on stroke. Circ. Res. 130, 512–528 (2022).
ArticleCASPubMedPubMed CentralGoogle Scholar
Fernández-Balsells, M. M. et al. Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 95, 2560–2575 (2010).
ArticlePubMedGoogle Scholar
Ohlander, S. J., Varghese, B. & Pastuszak, A. W. Erythrocytosis following testosterone therapy. Sex. Med. Rev. 6, 77–85 (2018).
ArticlePubMedGoogle Scholar
Stergiopoulos, K., Brennan, J. J., Mathews, R., Setaro, J. F. & Kort, S. Anabolic steroids, acute myocardial infarction and polycythemia: a case report and review of the literature. Vasc. Health Risk Manag. 4, 1475–1480 (2008).
ArticlePubMedPubMed CentralGoogle Scholar
Giacomelli, G. & Meriggiola, M. C. Bone health in transgender people: a narrative review. Ther. Adv. Endocrinol. Metab. 13, 20420188221099346 (2022).
Cheung, A. S., Nolan, B. J. & Zwickl, S. Transgender health and the impact of aging and menopause. Climacteric 26, 256–262 (2023).
ArticleCASPubMedGoogle Scholar
Becker, T., Chin, M. & Bates, N. (eds) Measuring Sex, Gender Identity, and Sexual Orientation (National Academies Press, 2022).
Marrie, R. A. et al. Enhancing diversity of clinical trial populations in multiple sclerosis. Mult. Scler. 29, 1174–1185 (2023).
ArticlePubMedPubMed CentralGoogle Scholar
Hoffmann, J. P., Liu, J. A., Seddu, K. & Klein, S. L. Sex hormone signaling and regulation of immune function. Immunity 56, 2472–2491 (2023).
ArticleCASPubMedGoogle Scholar
Straub, R. H. The complex role of estrogens in inflammation. Endocr. Rev. 28, 521–574 (2007).
ArticleCASPubMedGoogle Scholar
Villa, A., Vegeto, E., Poletti, A. & Maggi, A. Estrogens, neuroinflammation, and neurodegeneration. Endocr. Rev. 37, 372–402 (2016).
ArticleCASPubMedPubMed CentralGoogle Scholar
Brann, D. W., Dhandapani, K., Wakade, C., Mahesh, V. B. & Khan, M. M. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72, 381–405 (2007).
ArticleCASPubMedPubMed CentralGoogle Scholar
Lee, E. et al. GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J. Biol. Chem. 287, 26817–26828 (2012).
ArticleCASPubMedPubMed CentralGoogle Scholar
Crawford, D. K. et al. Oestrogen receptor β ligand: a novel treatment to enhance endogenous functional remyelination. Brain 133, 2999–3016 (2010).
ArticlePubMedPubMed CentralGoogle Scholar
Maggioli, E. et al. Estrogen protects the blood–brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav. Immun. 51, 212–222 (2016).
ArticleCASPubMedGoogle Scholar
Druckmann, R. & Druckmann, M.-A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 97, 389–396 (2005).
ArticleCASPubMedGoogle Scholar
Kolatorova, L., Vitku, J., Suchopar, J., Hill, M. & Parizek, A. Progesterone: a steroid with wide range of effects in physiology as well as human medicine. Int. J. Mol. Sci. 23, 7989 (2022).
ArticleCASPubMedPubMed CentralGoogle Scholar
Matejuk, A., Hopke, C., Vandenbark, A. A., Hurn, P. D. & Offner, H. Middle-age male mice have increased severity of experimental autoimmune encephalomyelitis and are unresponsive to testosterone therapy. J. Immunol. 174, 2387–2395 (2005).
ArticleCASPubMedGoogle Scholar
Dalal, M., Kim, S. & Voskuhl, R. R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J. Immunol. 159, 3–6 (1997).
ArticleCASPubMedGoogle Scholar
Corrales, J. et al. Androgen-replacement therapy depresses the ex vivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men with partial androgen deficiency. J. Endocrinol. 189, 595–604 (2006).
ArticleCASPubMedGoogle Scholar
Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).
ArticleCASPubMedPubMed CentralGoogle Scholar
Liva, S. M. & Voskuhl, R. R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167, 2060–2067 (2001).
ArticleCASPubMedGoogle Scholar
Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+ CD25+ Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).
ArticleCASPubMedPubMed CentralGoogle Scholar
Spritzer, M. D. & Roy, E. A. Testosterone and adult neurogenesis. Biomolecules 10, 225 (2020).
ArticleCASPubMedPubMed CentralGoogle Scholar
Reddy, D. S. & Jian, K. The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. J. Pharmacol. Exp. Ther. 334, 1031–1041 (2010).
ArticleCASPubMedPubMed CentralGoogle Scholar
Ahlbom, E., Prins, G. S. & Ceccatelli, S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 892, 255–262 (2001).
ArticleCASPubMedGoogle Scholar
Sarchielli, E. et al. Neuroprotective effects of testosterone in the hypothalamus of an animal model of metabolic syndrome. Int. J. Mol. Sci. 22, 1589 (2021).
ArticleCASPubMedPubMed CentralGoogle Scholar
Toro-Urrego, N., Garcia-Segura, L. M., Echeverria, V. & Barreto, G. E. Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front. Aging Neurosci. 8, 152 (2016).
ArticlePubMedPubMed CentralGoogle Scholar
Bielecki, B. et al. Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proc. Natl Acad. Sci. USA 113, 14829–14834 (2016).
ArticleCASPubMedPubMed CentralGoogle Scholar
Hellberg, S. et al. Progesterone dampens immune responses in in vitro activated CD4+ T cells and affects genes associated with autoimmune diseases that improve during pregnancy. Front. Immunol. 12, 672168 (2021).
ArticleCASPubMedPubMed CentralGoogle Scholar
Santana-Sánchez, P., Vaquero-García, R., Legorreta-Haquet, M. V., Chávez-Sánchez, L. & Chávez-Rueda, A. K. Hormones and B-cell development in health and autoimmunity. Front. Immunol. 15, 1385501 (2024).
ArticlePubMedPubMed CentralGoogle Scholar
Altuwaijri, S. et al. Susceptibility to autoimmunity and B cell resistance to apoptosis in mice lacking androgen receptor in B cells. Mol. Endocrinol. 23, 444–453 (2009).
ArticleCASPubMedPubMed CentralGoogle Scholar
Olsen, N. J., Gu, X. & Kovacs, W. J. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J. Clin. Invest. 108, 1697–1704 (2001).
ArticleCASPubMedPubMed CentralGoogle Scholar
Nilsson, N. & Carlsten, H. Estrogen induces suppression of natural killer cell cytotoxicity and augmentation of polyclonal B cell activation. Cell Immunol. 158, 131–139 (1994).
ArticleCASPubMedGoogle Scholar
Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. 180, 5746–5753 (2008).
ArticleCASPubMedGoogle Scholar
Page, S. T. et al. Effect of medical castration on CD4+ CD25+ T cells, CD8+ T cell IFN-γ expression, and NK cells: a physiological role for testosterone and/or its metabolites. Am. J. Physiol. Endocrinol. Metab. 290, E856–E863 (2006).
ArticleCASPubMedGoogle Scholar
Gagliano-Jucá, T. et al. Differential effects of testosterone on circulating neutrophils, monocytes, and platelets in men: findings from two trials. Andrology 8, 1324–1331 (2020).
ArticlePubMedPubMed CentralGoogle Scholar
Zhang, Y.-H., He, M., Wang, Y. & Liao, A.-H. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front. Immunol. 8, 120 (2017).
PubMedPubMed CentralGoogle Scholar
Rettew, J. A., Huet-Hudson, Y. M. & Marriott, I. Testosterone reduces macrophage expression in the mouse of Toll-like receptor 4, a trigger for inflammation and innate immunity. Biol. Reprod. 78, 432–437 (2008).
ArticleCASPubMedGoogle Scholar
Chen, W. et al. Human mast cells express androgen receptors but treatment with testosterone exerts no influence on IgE‐independent mast cell degranulation elicited by neuromuscular blocking agents. Exp. Dermatol. 19, 302–304 (2010).
ArticleCASPubMedGoogle Scholar
Vasiadi, M., Kempuraj, D., Boucher, W., Kalogeromitros, D. & Theoharides, T. C. Progesterone inhibits mast cell secretion. Int. J. Immunopathol. Pharmacol. 19, 787–794 (2006).
ArticleCASPubMedGoogle Scholar
Guhl, S., Artuc, M., Zuberbier, T. & Babina, M. Testosterone exerts selective anti-inflammatory effects on human skin mast cells in a cell subset dependent manner. Exp. Dermatol. 21, 878–880 (2012).
ArticleCASPubMedGoogle Scholar
Laffont, S., Seillet, C. & Guéry, J. C. Estrogen receptor-dependent regulation of dendritic cell development and function. Front. Immunol. 8, 108 (2017).
ArticlePubMedPubMed CentralGoogle Scholar
Khaw, Y. M. et al. Estrogen receptor alpha signaling in dendritic cells modulates autoimmune disease phenotype in mice. EMBO Rep. 24, e54228 (2023).
ArticleCASPubMedPubMed CentralGoogle Scholar
Butts, C. L. et al. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gend. Med. 5, 434–447 (2008).
ArticlePubMedPubMed CentralGoogle Scholar
Mackern-Oberti, J. P., Jara, E. L., Riedel, C. A. & Kalergis, A. M. Hormonal modulation of dendritic cells differentiation, maturation and function: implications for the initiation and progress of systemic autoimmunity. Arch. Immunol. Ther. Exp. 65, 123–136 (2017).
ArticleCASGoogle Scholar
Yang, P. et al. Progesterone alters the activation and typing of the microglia in the optic nerve crush model. Exp. Eye Res. 212, 108805 (2021).
ArticleCASPubMedGoogle Scholar
Aryanpour, R. et al. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int. Immunopharmacol. 51, 131–139 (2017).
ArticleCASPubMedGoogle Scholar
Barreto, G., Veiga, S., Azcoitia, I., Garcia-Segura, L. M. & Garcia-Ovejero, D. Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone. Eur. J. Neurosci. 25, 3039–3046 (2007).
ArticlePubMedGoogle Scholar
O’Connor, J. L. & Nissen, J. C. The pathological activation of microglia is modulated by sexually dimorphic pathways. Int. J. Mol. Sci. 24, 4739 (2023).
ArticlePubMedPubMed CentralGoogle Scholar
Schumacher, M. et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front. Neurosci. 6, 10 (2012).
ArticlePubMedPubMed CentralGoogle Scholar
Giraud, S. N., Caron, C. M., Pham-Dinh, D., Kitabgi, P. & Nicot, A. B. Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes. Proc. Natl Acad. Sci. USA 107, 8416–8421 (2010).
ArticleCASPubMedPubMed CentralGoogle Scholar
Dueñas, M. et al. Gonadal hormone regulation of insulin-like growth factor-I like immunoreactivity in hypothalamic astroglia of developing and adult rats. Neuroendocrinology 59, 528–538 (1994).
ArticlePubMedGoogle Scholar
Turniak-Kusy, M. et al. Testosterone inhibits secretion of the pro-inflammatory chemokine CXCL1 from astrocytes. Curr. Issues Mol. Biol. 46, 2105–2118 (2024).
ArticleCASPubMedPubMed CentralGoogle Scholar
Buendía-González, F. O. & Legorreta-Herrera, M. The similarities and differences between the effects of testosterone and DHEA on the innate and adaptive immune response. Biomolecules 12, 1768 (2022).
ArticlePubMedPubMed CentralGoogle Scholar
Zwahlen, M. & Stute, P. Impact of progesterone on the immune system in women: a systematic literature review. Arch. Gynecol. Obstet. 309, 37–46 (2024).
ArticleCASPubMedGoogle Scholar
Sciarra, F., Campolo, F., Franceschini, E., Carlomagno, F. & Venneri, M. A. Gender-specific impact of sex hormones on the immune system. Int. J. Mol. Sci. 24, 6302 (2023).
ArticleCASPubMedPubMed CentralGoogle Scholar
Lakshmikanth, T. et al. Immune system adaptation during gender-affirming testosterone treatment. Nature 633, 155–164 (2024).
ArticleCASPubMedPubMed CentralGoogle Scholar
Sellau, J., Groneberg, M. & Lotter, H. Androgen-dependent immune modulation in parasitic infection. Semin. Immunopathol. 41, 213–224 (2019).
ArticleCASPubMedGoogle Scholar
Cheung, A. S. et al. Approach to interpreting common laboratory pathology tests in transgender individuals. J. Clin. Endocrinol. Metab. 106, 893–901 (2021).
ArticlePubMedGoogle Scholar
Lim, H. Y. et al. Global coagulation assays in transgender women on oral and transdermal estradiol therapy. J. Clin. Endocrinol. Metab. 105, e2369–e2377 (2020).
ArticleGoogle Scholar
Dolladille, C. et al. Association between disease-modifying therapies prescribed to persons with multiple sclerosis and cancer: a WHO pharmacovigilance database analysis. Neurotherapeutics 18, 1657–1664 (2021).
ArticlePubMedPubMed CentralGoogle Scholar
Papadopoulos, D. et al. Disease-modifying treatments for multiple sclerosis have not affected the incidence of neoplasms in clinical trials over 3 decades: a meta-analysis with meta-regression. J. Neurol. 269, 3226–3237 (2022).
ArticlePubMedGoogle Scholar
Ghajarzadeh, M., Mohammadi, A. & Sahraian, M. A. Risk of cancer in multiple sclerosis (MS): a systematic review and meta-analysis. Autoimmun. Rev. 19, 102650 (2020).
ArticlePubMedGoogle Scholar
McFarlane, T., Zajac, J. D. & Cheung, A. S. Gender-affirming hormone therapy and the risk of sex hormone-dependent tumours in transgender individuals — a systematic review. Clin. Endocrinol. 89, 700–711 (2018).
ArticleCASGoogle Scholar
Bretherton, I. et al. Bone microarchitecture in transgender adults: a cross-sectional study. J. Bone Min. Res. 37, 643–648 (2022).
ArticleCASGoogle Scholar
Wiepjes, C. M. et al. Bone safety during the first ten years of gender-affirming hormonal treatment in transwomen and transmen. J. Bone Min. Res. 34, 447–454 (2019).
ArticleCASGoogle Scholar
Download references
Author information
Authors and Affiliations
Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
Cassie Nesbitt, Anneke Van Der Walt, Helmut Butzkueven & Vilija G. Jokubaitis
Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
Cassie Nesbitt, Anneke Van Der Walt, Helmut Butzkueven & Vilija G. Jokubaitis
Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
Cassie Nesbitt, Anneke Van Der Walt, Helmut Butzkueven & Vilija G. Jokubaitis
Trans Health Research Group, Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
Ada S. Cheung
Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
Ada S. Cheung
Authors
Cassie Nesbitt
View author publications
You can also search for this author in PubMedGoogle Scholar
2. Anneke Van Der Walt
View author publications
You can also search for this author in PubMedGoogle Scholar
3. Helmut Butzkueven
View author publications
You can also search for this author in PubMedGoogle Scholar
4. Ada S. Cheung
View author publications
You can also search for this author in PubMedGoogle Scholar
5. Vilija G. Jokubaitis
View author publications
You can also search for this author in PubMedGoogle Scholar
Contributions
C.N. researched data for the article. All authors contributed substantially to discussion of the content. C.N., A.S.C. and V.G.J. wrote the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding authors
Correspondence to Cassie Nesbitt or Vilija G. Jokubaitis.
Ethics declarations
Competing interests
A.S.C. has received product from Besins Healthcare for investigator-initiated clinical studies using oestradiol and progesterone. No monetary support from Besins Healthcare has been received for any studies, and Besins Healthcare have had no input into study design, data analysis or writing of any manuscripts.
Peer review
Peer review information
Nature Reviews Neurology thanks Cole Harrington, Jorge Correale, Melinda Magyari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Nesbitt, C., Van Der Walt, A., Butzkueven, H. et al. Exploring the role of sex hormones and gender diversity in multiple sclerosis. Nat Rev Neurol (2024). https://doi.org/10.1038/s41582-024-01042-x
Download citation
Accepted:30 October 2024
Published:11 December 2024
DOI:https://doi.org/10.1038/s41582-024-01042-x
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative