nature.com

Exploring the role of sex hormones and gender diversity in multiple sclerosis

Abstract

Sex and sex hormones are thought to influence multiple sclerosis (MS) through effects on inflammation, myelination and neurodegeneration, and exogenous hormones have been explored for their therapeutic potential. However, our understanding of how sex hormones influence MS disease processes and outcomes remains incomplete. Furthermore, our current knowledge is derived primarily from studies that focus exclusively on cisgender populations with exclusion of gender-diverse people. Gender-affirming hormone therapy comprising exogenous sex hormones or sex hormone blocking agents are commonly used by transgender and gender-diverse individuals, and it could influence MS risk and outcomes at various stages of disease. A better understanding of the impact and potential therapeutic effects of both endogenous and exogenous sex hormones in MS is needed to improve care and outcomes for cisgender individuals and, moreover, for gender-diverse populations wherein an evidence base does not exist. In this Perspective, we discuss the effects of endogenous and exogenous sex hormones in MS, including their potential therapeutic benefits, and examine both established sex-based dimorphisms and the potential for gender-diverse dimorphisms. We advocate for future research that includes gender-diverse people to enhance our knowledge of the interplay of sex and sex hormones in MS, leading to the development of more effective and inclusive treatment strategies and improvement of care for all individuals with MS.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Sex hormone receptors and the immune system.

Fig. 2: The neuroprotective role of sex hormone receptors in MS.

Fig. 3: Gender-affirming therapy.

References

Ahlgren, C., Odén, A. & Lycke, J. High nationwide prevalence of multiple sclerosis in Sweden. Mult. Scler. 17, 901–908 (2011).

ArticleCASPubMedGoogle Scholar

Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

ArticleCASPubMedGoogle Scholar

Khayambashi, S. et al. Gender identity and sexual orientation affect health care satisfaction, but not utilization, in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 37, 101440 (2020).

ArticlePubMedGoogle Scholar

Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Nolan, B. J., Zwickl, S., Locke, P., Zajac, J. D. & Cheung, A. S. Early access to testosterone therapy in transgender and gender-diverse adults seeking masculinization: a randomized clinical trial. JAMA Netw. Open 6, e2331919 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

van Leerdam, T. R., Zajac, J. D. & Cheung, A. S. The effect of gender-affirming hormones on gender dysphoria, quality of life, and psychological functioning in transgender individuals: a systematic review. Transgend. Health 8, 6–21 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Zwickl, S. et al. Health needs of trans and gender diverse adults in Australia: a qualitative analysis of a national community survey. Int. J. Environ. Res. Public Health 16, 5088 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Bretherton, I. et al. The health and well-being of transgender Australians: a national community survey. LGBT Health 8, 42–49 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Houssayni, S. & Nilsen, K. Transgender competent provider: identifying transgender health needs, health disparities, and health coverage. Kans. J. Med. 11, 1–18 (2018).

PubMedGoogle Scholar

Rosendale, N., Goldman, S., Ortiz, G. M. & Haber, L. A. Acute clinical care for transgender patients: a review. JAMA Intern. Med. 178, 1535–1543 (2018).

ArticlePubMedGoogle Scholar

Cheung, A. S. et al. Sociodemographic and clinical characteristics of transgender adults in Australia. Transgend. Health 3, 229–238 (2018).

ArticlePubMedPubMed CentralGoogle Scholar

Safer, J. D. Research gaps in medical treatment of transgender/nonbinary people. J. Clin. Invest. 131, e142029 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hsu, S. & Bove, R. Hormonal therapies in multiple sclerosis: a review of clinical data. Curr. Neurol. Neurosci. Rep. 24, 1–15 (2024).

ArticleCASPubMedGoogle Scholar

Ysrraelit, M. C. & Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 156, 9–22 (2019).

ArticleCASPubMedGoogle Scholar

Moulton, V. R. Sex hormones in acquired immunity and autoimmune disease. Front. Immunol. 9, 2279 (2018).

ArticlePubMedPubMed CentralGoogle Scholar

Brundin, P. M. A. et al. Expression of sex hormone receptor and immune response genes in peripheral blood mononuclear cells during the menstrual cycle. Front. Endocrinol. 12, 721813 (2021).

ArticleGoogle Scholar

Psenicka, M. W., Smith, B. C., Tinkey, R. A. & Williams, J. L. Connecting neuroinflammation and neurodegeneration in multiple sclerosis: are oligodendrocyte precursor cells a nexus of disease? Front. Cell Neurosci. 15, 654284 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Attfield, K. E., Jensen, L. T., Kaufmann, M., Friese, M. A. & Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734–750 (2022).

ArticleCASPubMedGoogle Scholar

Ribbons, K., Lea, R., Tiedeman, C., Mackenzie, L. & Lechner-Scott, J. Ongoing increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 50-year study. Mult. Scler. 23, 1063–1071 (2017).

ArticlePubMedGoogle Scholar

Westerlind, H. et al. New data identify an increasing sex ratio of multiple sclerosis in Sweden. Mult. Scler. 20, 1578–1583 (2014).

ArticlePubMedPubMed CentralGoogle Scholar

Trojano, M. et al. Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS ONE 7, e48078 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Chitnis, T. Role of puberty in multiple sclerosis risk and course. Clin. Immunol. 149, 192–200 (2013).

ArticleCASPubMedGoogle Scholar

Harroud, A. et al. Effect of age at puberty on risk of multiple sclerosis: a Mendelian randomization study. Neurology 92, e1803–e1810 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Kalincik, T. et al. Risk of relapse phenotype recurrence in multiple sclerosis. Mult. Scler. 20, 1511–1522 (2014).

ArticlePubMedGoogle Scholar

Pozzilli, C. et al. Gender gap’ in multiple sclerosis: magnetic resonance imaging evidence. Eur. J. Neurol. 10, 95–97 (2003).

ArticleCASPubMedGoogle Scholar

Weatherby, S. J. et al. A pilot study of the relationship between gadolinium-enhancing lesions, gender effect and polymorphisms of antioxidant enzymes in multiple sclerosis. J. Neurol. 247, 467–470 (2000).

ArticleCASPubMedGoogle Scholar

Pelfrey, C. M., Cotleur, A. C., Lee, J. C. & Rudick, R. A. Sex differences in cytokine responses to myelin peptides in multiple sclerosis. J. Neuroimmunol. 130, 211–223 (2002).

ArticleCASPubMedGoogle Scholar

Moldovan, I. R., Cotleur, A. C., Zamor, N., Butler, R. S. & Pelfrey, C. M. Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens. J. Neuroimmunol. 193, 161–169 (2008).

ArticleCASPubMedGoogle Scholar

Greer, J. M., Csurhes, P. A., Pender, M. P. & McCombe, P. A. Effect of gender on T-cell proliferative responses to myelin proteolipid protein antigens in patients with multiple sclerosis and controls. J. Autoimmun. 22, 345–352 (2004).

ArticleCASPubMedGoogle Scholar

Glad, S. B., Nyland, H. I., Aarseth, J. H., Riise, T. & Myhr, K. M. Long-term follow-up of benign multiple sclerosis in Hordaland County, Western Norway. Mult. Scler. 15, 942–950 (2009).

ArticleCASPubMedGoogle Scholar

Koch, M., Kingwell, E., Rieckmann, P. & Tremlett, H. The natural history of secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 1039–1043 (2010).

ArticlePubMedGoogle Scholar

Wolfson, C. & Confavreux, C. A Markov model of the natural history of multiple sclerosis. Neuroepidemiology 4, 227–239 (1985).

ArticleCASPubMedGoogle Scholar

Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome. Brain 114, 1045–1056 (1991).

ArticlePubMedGoogle Scholar

Runmarker, B. & Andersen, O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 116, 117–134 (1993).

ArticlePubMedGoogle Scholar

Bove, R. M. et al. Effect of gender on late-onset multiple sclerosis. Mult. Scler. 18, 1472–1479 (2012).

ArticlePubMedGoogle Scholar

Tintore, M. & Tur, C. Understanding the role of gender and hormones in multiple sclerosis. Mult. Scler. J. 20, 518–519 (2014).

ArticleGoogle Scholar

Millar, J. H. The influence of pregnancy on disseminated sclerosis. Proc. R. Soc. Med. 54, 4–7 (1961).

CASPubMedPubMed CentralGoogle Scholar

Achiron, A. et al. Parity and disability progression in relapsing-remitting multiple sclerosis. J. Neurol. 267, 3753–3762 (2020).

ArticlePubMedGoogle Scholar

Jokubaitis, V. G. et al. Predictors of long-term disability accrual in relapse-onset multiple sclerosis. Ann. Neurol. 80, 89–100 (2016).

ArticlePubMedGoogle Scholar

McCombe, P. A. & Greer, J. M. Female reproductive issues in multiple sclerosis. Mult. Scler. J. 19, 392–402 (2013).

ArticleCASGoogle Scholar

Robinson, G. A. et al. Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: a cross-sectional study. Lancet Rheumatol. 4, e710–e724 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Brunton, P. J. & Russell, J. A. Endocrine induced changes in brain function during pregnancy. Brain Res. 1364, 198–215 (2010).

ArticleCASPubMedGoogle Scholar

Cole, J. H. et al. Longitudinal assessment of multiple sclerosis with the brain-age paradigm. Ann. Neurol. 88, 93–105 (2020).

ArticlePubMedGoogle Scholar

Campagna, M. P. et al. Conceiving complexity: biological mechanisms underpinning the lasting effect of pregnancy on multiple sclerosis outcomes. Autoimmun. Rev. 22, 103388 (2023).

ArticleCASPubMedGoogle Scholar

Yeh, W. Z. et al. Natalizumab, fingolimod and dimethyl fumarate use and pregnancy-related relapse and disability in women with multiple sclerosis. Neurology 96, e2989–e3002 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Gavoille, A. et al. Investigating the long-term effect of pregnancy on the course of multiple sclerosis using causal inference. Neurology 100, e1296–e1308 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hansberg-Pastor, V., González-Arenas, A., Piña-Medina, A. G. & Camacho-Arroyo, I. Sex hormones regulate cytoskeletal proteins involved in brain plasticity. Front. Psychiatry 6, 165 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Barth, C., Villringer, A. & Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 9, 37 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).

ArticleCASPubMedGoogle Scholar

Marschallinger, R. et al. Geostatistical analysis of white matter lesions in multiple sclerosis identifies gender differences in lesion evolution. Front. Mol. Neurosci. 11, 460 (2018).

ArticlePubMedPubMed CentralGoogle Scholar

Fazekas, F. et al. Gender differences in MRI studies on multiple sclerosis. J. Neurol. Sci. 286, 28–30 (2009).

ArticlePubMedGoogle Scholar

Voskuhl, R. R. et al. Sex differences in brain atrophy in multiple sclerosis. Biol. Sex. Differ. 11, 49 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Rommer, P. S. et al. Relapsing and progressive MS: the sex-specific perspective. Ther. Adv. Neurol. Disord. 13, 1756286420956495 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Savettieri, G. et al. Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J. Neurol. 251, 1208–1214 (2004).

ArticlePubMedGoogle Scholar

Luetic, G. G. et al. Clinical and demographic characteristics of male MS patients included in the national registry — RelevarEM. Does sex or phenotype make the difference in the association with poor prognosis? Mult. Scler. Relat. Disord. 58, 103401 (2022).

ArticlePubMedGoogle Scholar

Wilkins, A. Cerebellar dysfunction in multiple sclerosis. Front. Neurol. 8, 312 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Tomassini, V. et al. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J. Neurol. Neurosurg. Psychiatry 76, 272–275 (2005).

ArticleCASPubMedPubMed CentralGoogle Scholar

Spence, R. D. & Voskuhl, R. R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front. Neuroendocrinol. 33, 105–115 (2012).

ArticleCASPubMedGoogle Scholar

Thakolwiboon, S. et al. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. Front. Aging 4, 1234572 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Caruso, C., Accardi, G., Virruso, C. & Candore, G. Sex, gender and immunosenescence: a key to understand the different lifespan between men and women? Immun. Ageing 10, 20 (2013).

ArticlePubMedPubMed CentralGoogle Scholar

Kalincik, T. et al. Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain 136, 3609–3617 (2013).

ArticlePubMedGoogle Scholar

Cheung, A. S., Wynne, K., Erasmus, J., Murray, S. & Zajac, J. D. Position statement on the hormonal management of adult transgender and gender diverse individuals. Med. J. Aust. 211, 127–133 (2019).

ArticlePubMedGoogle Scholar

Bove, R. et al. Oral contraceptives and MS disease activity in a contemporary real-world cohort. Mult. Scler. J. 24, 227–230 (2018).

ArticleGoogle Scholar

Otero-Romero, S. et al. Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis. Mult. Scler. J. 28, 950–957 (2022).

ArticleCASGoogle Scholar

Chen, C. S. et al. Comparison of MS inflammatory activity in women using continuous versus cyclic combined oral contraceptives. Mult. Scler. Relat. Disord. 41, 101970 (2020).

ArticlePubMedGoogle Scholar

Pozzilli, C. et al. Oral contraceptives combined with interferon β in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2, e120 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Seifert, H. A. et al. Estrogen protects both sexes against EAE by promoting common regulatory cell subtypes independent of endogenous estrogen. Metab. Brain Dis. 32, 1747–1754 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sicotte, N. L. et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol. 52, 421–428 (2002).

ArticleCASPubMedGoogle Scholar

Voskuhl, R. R. et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 35–46 (2016).

ArticleCASPubMedGoogle Scholar

Voskuhl, R. et al. Decreased neurofilament light chain levels in estriol-treated multiple sclerosis. Ann. Clin. Transl. Neurol. 9, 1316–1320 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Soldan, S. S., Alvarez Retuerto, A. I., Sicotte, N. L. & Voskuhl, R. R. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J. Immunol. 171, 6267–6274 (2003).

ArticleCASPubMedGoogle Scholar

MacKenzie-Graham, A. et al. Estriol-mediated neuroprotection in multiple sclerosis localized by voxel-based morphometry. Brain Behav. 8, e01086 (2018).

ArticlePubMedPubMed CentralGoogle Scholar

Støer, N. C. et al. Menopausal hormone therapy and breast cancer risk: a population-based cohort study of 1.3 million women in Norway. Br. J. Cancer 131, 126–137 (2024).

ArticlePubMedPubMed CentralGoogle Scholar

Gold, S. M. & Voskuhl, R. R. Estrogen and testosterone therapies in multiple sclerosis. Prog. Brain Res. 175, 239–251 (2009).

ArticleCASPubMedPubMed CentralGoogle Scholar

Takahashi, K. et al. Safety and efficacy of oestriol for symptoms of natural or surgically induced menopause. Hum. Reprod. 15, 1028–1036 (2000).

ArticleCASPubMedGoogle Scholar

Bridge, F., Butzkueven, H., Van der Walt, A. & Jokubaitis, V. G. The impact of menopause on multiple sclerosis. Autoimmun. Rev. 22, 103363 (2023).

ArticlePubMedGoogle Scholar

Guo, H. et al. The critical period for neuroprotection by estrogen replacement therapy and the potential underlying mechanisms. Curr. Neuropharmacol. 18, 485–500 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lord, C., Buss, C., Lupien, S. J. & Pruessner, J. C. Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neurobiol. Aging 29, 95–101 (2008).

ArticleCASPubMedGoogle Scholar

Coughlan, G. T. et al. Association of age at menopause and hormone therapy use with tau and β-amyloid positron emission tomography. JAMA Neurol. 80, 462–473 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Bove, R. et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82, 222–229 (2014).

ArticlePubMedPubMed CentralGoogle Scholar

Shumaker, S. A. et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2947–2958 (2004).

ArticleCASPubMedGoogle Scholar

Espeland, M. A. et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern. Med. 173, 1429–1436 (2013).

ArticlePubMedGoogle Scholar

Gleason, C. E. et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-Cognitive and Affective Study. PLoS Med. 12, e1001833 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Davison, S. L. et al. Continuous-combined oral estradiol/drospirenone has no detrimental effect on cognitive performance and improves estrogen deficiency symptoms in early postmenopausal women: a randomized placebo-controlled trial. Menopause 20, 1020–1026 (2013).

ArticlePubMedGoogle Scholar

Hodis, H. N. et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N. Engl. J. Med. 374, 1221–1231 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bove, R. et al. Hormone therapy use and physical quality of life in postmenopausal women with multiple sclerosis. Neurology 87, 1457–1463 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bove, R. et al. Patients report worse MS symptoms after menopause: findings from an online cohort. Mult. Scler. Relat. Disord. 4, 18–24 (2015).

ArticleCASPubMedGoogle Scholar

Kopp, T. I., Lidegaard, Ø. & Magyari, M. Hormone therapy and disease activity in Danish women with multiple sclerosis: a population-based cohort study. Eur. J. Neurol. 29, 1753–1762 (2022).

ArticlePubMedGoogle Scholar

Bove, R. et al. A hormonal therapy for menopausal women with MS: a phase Ib/IIa randomized controlled trial. Mult. Scler. Relat. Disord. 61, 103747 (2022).

ArticleCASPubMedGoogle Scholar

Juutinen, L., Ahinko, K., Tinkanen, H., Rosti-Otajärvi, E. & Sumelahti, M.-L. Menopausal symptoms and hormone therapy in women with multiple sclerosis: a baseline-controlled study. Mult. Scler. Relat. Disord. 67, 104098 (2022).

ArticleCASPubMedGoogle Scholar

DonCarlos, L. L., Azcoitia, I. & Garcia-Segura, L. M. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 34, S113–S122 (2009).

ArticleCASPubMedGoogle Scholar

Khan, M. M., Wakade, C., de Sevilla, L. & Brann, D. W. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J. Steroid Biochem. Mol. Biol. 146, 38–47 (2015).

ArticleCASPubMedGoogle Scholar

Arevalo, M. A., Santos-Galindo, M., Lagunas, N., Azcoitia, I. & Garcia-Segura, L. M. Selective estrogen receptor modulators as brain therapeutic agents. J. Mol. Endocrinol. 46, R1–R9 (2011).

ArticleCASPubMedGoogle Scholar

Newhouse, P. et al. Tamoxifen improves cholinergically modulated cognitive performance in postmenopausal women. Neuropsychopharmacology 38, 2632–2643 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Liao, K.-F., Lin, C.-L. & Lai, S.-W. Nationwide case-control study examining the association between tamoxifen use and Alzheimer’s disease in aged women with breast cancer in Taiwan. Front. Pharmacol. 8, 295503 (2017).

ArticleGoogle Scholar

Underwood, E. et al. Cognitive sequelae of endocrine therapy in women treated for breast cancer: a meta-analysis. Breast Cancer Res. Treat. 168, 299–310 (2018).

ArticleCASPubMedGoogle Scholar

Branigan, G. L., Soto, M., Neumayer, L., Rodgers, K. & Brinton, R. D. Association between hormone-modulating breast cancer therapies and incidence of neurodegenerative outcomes for women with breast cancer. JAMA Netw. Open 3, e201541 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Rankin, K. A. et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors. J. Neurosci. 39, 2184–2194 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Gonzalez, G. A. et al. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system. Sci. Rep. 6, 31599 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Nylander, A. et al. Re-WRAP (remyelination for women at risk of axonal loss and progression): a phase II randomized placebo-controlled delayed-start trial of bazedoxifene for myelin repair in multiple sclerosis. Contemp. Clin. Trials 134, 107333 (2023).

ArticlePubMedGoogle Scholar

Mendell, A. L. & MacLusky, N. J. Neurosteroid metabolites of gonadal steroid hormones in neuroprotection: implications for sex differences in neurodegenerative disease. Front. Mol. Neurosci. 11, 359 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Jure, I., De Nicola, A. F. & Labombarda, F. Progesterone effects on the oligodendrocyte linage: all roads lead to the progesterone receptor. Neural Regen. Res. 14, 2029–2034 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bansil, S., Lee, H. J., Jindal, S., Holtz, C. R. & Cook, S. D. Correlation between sex hormones and magnetic resonance imaging lesions in multiple sclerosis. Acta Neurol. Scand. 99, 91–94 (1999).

ArticleCASPubMedGoogle Scholar

Labombarda, F. et al. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp. Neurol. 231, 135–146 (2011).

ArticleCASPubMedGoogle Scholar

Costanza, M. & Pedotti, R. Prolactin: friend or foe in central nervous system autoimmune inflammation? Int. J. Mol. Sci. 17, 2026 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Gregg, C. et al. White matter plasticity and enhanced remyelination in the maternal CNS. J. Neurosci. 27, 1812 (2007).

ArticleCASPubMedPubMed CentralGoogle Scholar

Duc Nguyen, H. et al. Association between serum prolactin levels and neurodegenerative diseases: systematic review and meta-analysis. Neuroimmunomodulation 29, 85–96 (2022).

ArticleCASPubMedGoogle Scholar

Zhornitsky, S., Yong, V. W., Weiss, S. & Metz, L. M. Prolactin in multiple sclerosis. Mult. Scler. 19, 15–23 (2013).

ArticlePubMedGoogle Scholar

Bissay, V. et al. Bromocriptine therapy in multiple sclerosis: an open label pilot study. Clin. Neuropharmacol. 17, 473–476 (1994).

ArticleCASPubMedGoogle Scholar

Pakpoor, J. et al. Breastfeeding and multiple sclerosis relapses: a meta-analysis. J. Neurol. 259, 2246–2248 (2012).

ArticlePubMedGoogle Scholar

Van Der Walt, A., Nguyen, A.-L. & Jokubaitis, V. Family planning, antenatal and post partum care in multiple sclerosis: a review and update. Med. J. Aust. 211, 230–236 (2019).

ArticlePubMedGoogle Scholar

Son, S. W. et al. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J. Neurochem. 136, 106–117 (2016).

ArticleCASPubMedGoogle Scholar

Meydan, S. et al. Effects of testosterone on orchiectomy-induced oxidative damage in the rat hippocampus. J. Chem. Neuroanat. 40, 281–285 (2010).

ArticleCASPubMedGoogle Scholar

Ziehn, M. O. et al. Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J. Neurosci. 32, 12312–12324 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hussain, R. et al. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136, 132–146 (2013).

ArticlePubMedPubMed CentralGoogle Scholar

Bove, R. et al. Low testosterone is associated with disability in men with multiple sclerosis. Mult. Scler. 20, 1584–1592 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hammad, M. A. M. et al. Multiple sclerosis and hypogonadism: is there a relationship? Sex. Med. Rev. 12, 178–182 (2024).

ArticlePubMedGoogle Scholar

Chitnis, T. The role of testosterone in MS risk and course. Mult. Scler. 24, 36–41 (2018).

ArticleCASPubMedGoogle Scholar

Sicotte, N. L. et al. Testosterone treatment in multiple sclerosis: a pilot study. Arch. Neurol. 64, 683–688 (2007).

ArticlePubMedGoogle Scholar

Kurth, F. et al. Neuroprotective effects of testosterone treatment in men with multiple sclerosis. Neuroimage Clin. 4, 454–460 (2014).

ArticlePubMedPubMed CentralGoogle Scholar

Gold, S. M., Chalifoux, S., Giesser, B. S. & Voskuhl, R. R. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J. Neuroinflamm . 5, 32 (2008).

ArticleGoogle Scholar

Metzger-Peter, K. et al. The TOTEM RRMS (Testosterone Treatment on neuroprotection and Myelin Repair in Relapsing Remitting Multiple Sclerosis) trial: study protocol for a randomized, double-blind, placebo-controlled trial. Trials 21, 591 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Triantafyllou, N. et al. Association of sex hormones and glucose metabolism with the severity of multiple sclerosis. Int. J. Neurosci. 126, 797–804 (2016).

ArticleCASPubMedGoogle Scholar

Bove, R. et al. Effect of assisted reproductive technology on multiple sclerosis relapses: case series and meta-analysis. Mult. Scler. 26, 1410–1419 (2020).

ArticlePubMedGoogle Scholar

Mainguy, M. et al. Assessing the risk of relapse requiring corticosteroids after in vitro fertilization in women with multiple sclerosis. Neurology 99, e1916–e1925 (2022).

ArticleCASPubMedGoogle Scholar

Graham, E. L. et al. Inflammatory activity after diverse fertility treatments: a multicenter analysis in the modern multiple sclerosis treatment era. Neurol. Neuroimmunol. Neuroinflamm. 10, e200106 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Nolan, B. J. & Cheung, A. S. Gender-affirming hormone therapy for transgender and gender-diverse adults in Australia. Intern. Med. J. 54, 1450–1457 (2024).

ArticleCASPubMedGoogle Scholar

Coleman, E. et al. Standards of Care for the health of transgender and gender diverse people, version 8. Int. J. Transgend. Health 23 (Suppl. 1), S1–S259 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bianchi, I., Lleo, A., Gershwin, M. E. & Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).

ArticleCASPubMedGoogle Scholar

International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

ArticlePubMed CentralGoogle Scholar

Piatek, P. et al. Multiple sclerosis CD49d+CD154+ as myelin-specific lymphocytes induced during remyelination. Cells 9, 15 (2020).

ArticleCASGoogle Scholar

Shepherd, R. et al. Gender-affirming hormone therapy induces specific DNA methylation changes in blood. Clin. Epigenet. 14, 24 (2022).

ArticleCASGoogle Scholar

Giltay, E. J. et al. In vivo effects of sex steroids on lymphocyte responsiveness and immunoglobulin levels in humans. J. Clin. Endocrinol. Metab. 85, 1648–1657 (2000).

ArticleCASPubMedGoogle Scholar

Giltay, E. J., Gooren, L. J., Emeis, J. J., Kooistra, T. & Stehouwer, C. D. Oral ethinyl estradiol, but not transdermal 17beta-estradiol, increases plasma C-reactive protein levels in men. Thromb. Haemost. 84, 359–360 (2000).

ArticleCASPubMedGoogle Scholar

Landry, A., Docherty, P., Ouellette, S. & Cartier, L. J. Causes and outcomes of markedly elevated C-reactive protein levels. Can. Fam. Physician 63, e316–e323 (2017).

PubMedPubMed CentralGoogle Scholar

Giltay, E. J. et al. The sex difference of plasma homovanillic acid is unaffected by cross-sex hormone administration in transsexual subjects. J. Endocrinol. 187, 109–116 (2005).

ArticleCASPubMedGoogle Scholar

Nie, J., Li, Y. Y., Zheng, S. G., Tsun, A. & Li, B. FOXP3+ Treg cells and gender bias in autoimmune diseases. Front. Immunol. 6, 493 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Dejaco, C., Duftner, C., Grubeck-Loebenstein, B. & Schirmer, M. Imbalance of regulatory T cells in human autoimmune diseases. Immunology 117, 289–300 (2006).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ramos, S., Ingenito, F., Mormandi, E., Nagelberg, A. & Otero, P. High prevalence of altered immunological biomarkers in a transgender population. Autoimmun. Infect. Dis. https://doi.org/10.16966/2470-1025.125 (2020).

White, A. A. et al. Potential immunological effects of gender-affirming hormone therapy in transgender people — an unexplored area of research. Ther. Adv. Endocrinol. Metab. 13, 20420188221139612 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Schutte, M. H. et al. The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLoS ONE 17, e0261312 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Gooren, L. J., Kreukels, B., Lapauw, B. & Giltay, E. J. (Patho)physiology of cross-sex hormone administration to transsexual people: the potential impact of male-female genetic differences. Andrologia 47, 5–19 (2015).

ArticleCASPubMedGoogle Scholar

Butterworth, M., McClellan, B. & Allansmith, M. Influence of sex in immunoglobulin levels. Nature 214, 1224–1225 (1967).

ArticleCASPubMedGoogle Scholar

Stoop, J. W., Zegers, B. J., Sander, P. C. & Ballieux, R. E. Serum immunoglobulin levels in healthy children and adults. Clin. Exp. Immunol. 4, 101–112 (1969).

CASPubMedPubMed CentralGoogle Scholar

Pakpoor, J., Wotton, C. J., Schmierer, K., Giovannoni, G. & Goldacre, M. J. Gender identity disorders and multiple sclerosis risk: a national record-linkage study. Mult. Scler. 22, 1759–1762 (2016).

ArticlePubMedGoogle Scholar

Miles, C., Green, R., Sanders, G. & Hines, M. Estrogen and memory in a transsexual population. Horm. Behav. 34, 199–208 (1998).

ArticleCASPubMedGoogle Scholar

Kranz, G. S. et al. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals. Brain Struct. Funct. 223, 321–328 (2018).

ArticleCASPubMedGoogle Scholar

Zubiaurre-Elorza, L., Junque, C., Gómez-Gil, E. & Guillamon, A. Effects of cross-sex hormone treatment on cortical thickness in transsexual individuals. J. Sex. Med. 11, 1248–1261 (2014).

ArticleCASPubMedGoogle Scholar

Lavorgna, L. et al. Health-care disparities stemming from sexual orientation of Italian patients with multiple sclerosis: a cross-sectional web-based study. Mult. Scler. Relat. Disord. 13, 28–32 (2017).

ArticlePubMedGoogle Scholar

White Hughto, J. M., Reisner, S. L. & Pachankis, J. E. Transgender stigma and health: a critical review of stigma determinants, mechanisms, and interventions. Soc. Sci. Med. 147, 222–231 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Conron, K. J., Mimiaga, M. J. & Landers, S. J. A population-based study of sexual orientation identity and gender differences in adult health. Am. J. Public Health 100, 1953–1960 (2010).

ArticlePubMedPubMed CentralGoogle Scholar

Flower, L. et al. Management of transgender patients in critical care. J. Intensive Care Soc. 24, 320–327 (2023).

ArticlePubMedGoogle Scholar

Anderson, A. et al. Experiences of sexual and gender minority people living with multiple sclerosis in Northern California: an exploratory study. Mult. Scler. Relat. Disord. 55, 103214 (2021).

ArticlePubMedGoogle Scholar

James, S. et al. The report of the 2015 US Transgender Survey (National Center for Transgender Equality, 2016).

Rosendale, N. et al. American Academy of Neurology members’ preparedness to treat sexual and gender minorities. Neurology 93, 159–166 (2019).

ArticlePubMedGoogle Scholar

Rosendale, N., Wong, J. O., Flatt, J. D. & Whitaker, E. Sexual and gender minority health in neurology: a scoping review. JAMA Neurol. 78, 747–754 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Marrie, R. A. et al. Etiology, effects and management of comorbidities in multiple sclerosis: recent advances. Front. Immunol. 14, 1197195 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hobart, J. et al. International consensus on quality standards for brain health-focused care in multiple sclerosis. Mult. Scler. 25, 1809–1818 (2019).

ArticlePubMedGoogle Scholar

Dispenza, F., Harper, L. S. & Harrigan, M. A. Subjective health among LGBT persons living with disabilities: a qualitative content analysis. Rehabil. Psychol. 61, 251–259 (2016).

ArticlePubMedGoogle Scholar

Huo, S. et al. Brain health outcomes in sexual and gender minority groups. Neurology 103, e209863 (2024).

ArticlePubMedGoogle Scholar

Yarns, B. C., Abrams, J. M., Meeks, T. W. & Sewell, D. D. The mental health of older LGBT adults. Curr. Psychiatry Rep. 18, 60 (2016).

ArticlePubMedGoogle Scholar

Minnis, A. M. et al. Differences in chronic disease behavioral indicators by sexual orientation and sex. J. Public Health Manag. Pract. 22, S25–S32 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Daniel, H. & Butkus, R. Lesbian, gay, bisexual, and transgender health disparities: executive summary of a policy position paper from the American College of Physicians. Ann. Intern. Med. 163, 135–137 (2015).

ArticlePubMedGoogle Scholar

Dragon, C. N., Guerino, P., Ewald, E. & Laffan, A. M. Transgender Medicare beneficiaries and chronic conditions: exploring fee-for-service claims data. LGBT Health 4, 404–411 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Warrier, V. et al. Elevated rates of autism, other neurodevelopmental and psychiatric diagnoses, and autistic traits in transgender and gender-diverse individuals. Nat. Commun. 11, 3959 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Strang, J. F. et al. Revisiting the link: evidence of the rates of autism in studies of gender diverse individuals. J. Am. Acad. Child Adolesc. Psychiatry 57, 885–887 (2018).

ArticlePubMedGoogle Scholar

Thrower, E., Bretherton, I., Pang, K. C., Zajac, J. D. & Cheung, A. S. Prevalence of autism spectrum disorder and attention-deficit hyperactivity disorder amongst individuals with gender dysphoria: a systematic review. J. Autism Dev. Disord. 50, 695–706 (2020).

ArticlePubMedGoogle Scholar

Melamed, E. & Lee, M. W. Multiple sclerosis and cancer: the Ying-Yang effect of disease modifying therapies. Front. Immunol. 10, 2954 (2019).

ArticleCASPubMedGoogle Scholar

Sterling, J. & Garcia, M. M. Cancer screening in the transgender population: a review of current guidelines, best practices, and a proposed care model. Transl. Androl. Urol. 9, 2771–2785 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Leszek, J. et al. The links between cardiovascular diseases and Alzheimer’s disease. Curr. Neuropharmacol. 19, 152–169 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Mincu, R. I. et al. Cardiovascular dysfunction in multiple sclerosis. Maedica 10, 364–370 (2015).

PubMedPubMed CentralGoogle Scholar

Rexrode, K. M. et al. The impact of sex and gender on stroke. Circ. Res. 130, 512–528 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Fernández-Balsells, M. M. et al. Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 95, 2560–2575 (2010).

ArticlePubMedGoogle Scholar

Ohlander, S. J., Varghese, B. & Pastuszak, A. W. Erythrocytosis following testosterone therapy. Sex. Med. Rev. 6, 77–85 (2018).

ArticlePubMedGoogle Scholar

Stergiopoulos, K., Brennan, J. J., Mathews, R., Setaro, J. F. & Kort, S. Anabolic steroids, acute myocardial infarction and polycythemia: a case report and review of the literature. Vasc. Health Risk Manag. 4, 1475–1480 (2008).

ArticlePubMedPubMed CentralGoogle Scholar

Giacomelli, G. & Meriggiola, M. C. Bone health in transgender people: a narrative review. Ther. Adv. Endocrinol. Metab. 13, 20420188221099346 (2022).

Cheung, A. S., Nolan, B. J. & Zwickl, S. Transgender health and the impact of aging and menopause. Climacteric 26, 256–262 (2023).

ArticleCASPubMedGoogle Scholar

Becker, T., Chin, M. & Bates, N. (eds) Measuring Sex, Gender Identity, and Sexual Orientation (National Academies Press, 2022).

Marrie, R. A. et al. Enhancing diversity of clinical trial populations in multiple sclerosis. Mult. Scler. 29, 1174–1185 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Hoffmann, J. P., Liu, J. A., Seddu, K. & Klein, S. L. Sex hormone signaling and regulation of immune function. Immunity 56, 2472–2491 (2023).

ArticleCASPubMedGoogle Scholar

Straub, R. H. The complex role of estrogens in inflammation. Endocr. Rev. 28, 521–574 (2007).

ArticleCASPubMedGoogle Scholar

Villa, A., Vegeto, E., Poletti, A. & Maggi, A. Estrogens, neuroinflammation, and neurodegeneration. Endocr. Rev. 37, 372–402 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Brann, D. W., Dhandapani, K., Wakade, C., Mahesh, V. B. & Khan, M. M. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 72, 381–405 (2007).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lee, E. et al. GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J. Biol. Chem. 287, 26817–26828 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Crawford, D. K. et al. Oestrogen receptor β ligand: a novel treatment to enhance endogenous functional remyelination. Brain 133, 2999–3016 (2010).

ArticlePubMedPubMed CentralGoogle Scholar

Maggioli, E. et al. Estrogen protects the blood–brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav. Immun. 51, 212–222 (2016).

ArticleCASPubMedGoogle Scholar

Druckmann, R. & Druckmann, M.-A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 97, 389–396 (2005).

ArticleCASPubMedGoogle Scholar

Kolatorova, L., Vitku, J., Suchopar, J., Hill, M. & Parizek, A. Progesterone: a steroid with wide range of effects in physiology as well as human medicine. Int. J. Mol. Sci. 23, 7989 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Matejuk, A., Hopke, C., Vandenbark, A. A., Hurn, P. D. & Offner, H. Middle-age male mice have increased severity of experimental autoimmune encephalomyelitis and are unresponsive to testosterone therapy. J. Immunol. 174, 2387–2395 (2005).

ArticleCASPubMedGoogle Scholar

Dalal, M., Kim, S. & Voskuhl, R. R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J. Immunol. 159, 3–6 (1997).

ArticleCASPubMedGoogle Scholar

Corrales, J. et al. Androgen-replacement therapy depresses the ex vivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men with partial androgen deficiency. J. Endocrinol. 189, 595–604 (2006).

ArticleCASPubMedGoogle Scholar

Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

Liva, S. M. & Voskuhl, R. R. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167, 2060–2067 (2001).

ArticleCASPubMedGoogle Scholar

Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+ CD25+ Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Spritzer, M. D. & Roy, E. A. Testosterone and adult neurogenesis. Biomolecules 10, 225 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Reddy, D. S. & Jian, K. The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. J. Pharmacol. Exp. Ther. 334, 1031–1041 (2010).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ahlbom, E., Prins, G. S. & Ceccatelli, S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 892, 255–262 (2001).

ArticleCASPubMedGoogle Scholar

Sarchielli, E. et al. Neuroprotective effects of testosterone in the hypothalamus of an animal model of metabolic syndrome. Int. J. Mol. Sci. 22, 1589 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Toro-Urrego, N., Garcia-Segura, L. M., Echeverria, V. & Barreto, G. E. Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front. Aging Neurosci. 8, 152 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Bielecki, B. et al. Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proc. Natl Acad. Sci. USA 113, 14829–14834 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hellberg, S. et al. Progesterone dampens immune responses in in vitro activated CD4+ T cells and affects genes associated with autoimmune diseases that improve during pregnancy. Front. Immunol. 12, 672168 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Santana-Sánchez, P., Vaquero-García, R., Legorreta-Haquet, M. V., Chávez-Sánchez, L. & Chávez-Rueda, A. K. Hormones and B-cell development in health and autoimmunity. Front. Immunol. 15, 1385501 (2024).

ArticlePubMedPubMed CentralGoogle Scholar

Altuwaijri, S. et al. Susceptibility to autoimmunity and B cell resistance to apoptosis in mice lacking androgen receptor in B cells. Mol. Endocrinol. 23, 444–453 (2009).

ArticleCASPubMedPubMed CentralGoogle Scholar

Olsen, N. J., Gu, X. & Kovacs, W. J. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J. Clin. Invest. 108, 1697–1704 (2001).

ArticleCASPubMedPubMed CentralGoogle Scholar

Nilsson, N. & Carlsten, H. Estrogen induces suppression of natural killer cell cytotoxicity and augmentation of polyclonal B cell activation. Cell Immunol. 158, 131–139 (1994).

ArticleCASPubMedGoogle Scholar

Arruvito, L. et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J. Immunol. 180, 5746–5753 (2008).

ArticleCASPubMedGoogle Scholar

Page, S. T. et al. Effect of medical castration on CD4+ CD25+ T cells, CD8+ T cell IFN-γ expression, and NK cells: a physiological role for testosterone and/or its metabolites. Am. J. Physiol. Endocrinol. Metab. 290, E856–E863 (2006).

ArticleCASPubMedGoogle Scholar

Gagliano-Jucá, T. et al. Differential effects of testosterone on circulating neutrophils, monocytes, and platelets in men: findings from two trials. Andrology 8, 1324–1331 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Zhang, Y.-H., He, M., Wang, Y. & Liao, A.-H. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front. Immunol. 8, 120 (2017).

PubMedPubMed CentralGoogle Scholar

Rettew, J. A., Huet-Hudson, Y. M. & Marriott, I. Testosterone reduces macrophage expression in the mouse of Toll-like receptor 4, a trigger for inflammation and innate immunity. Biol. Reprod. 78, 432–437 (2008).

ArticleCASPubMedGoogle Scholar

Chen, W. et al. Human mast cells express androgen receptors but treatment with testosterone exerts no influence on IgE‐independent mast cell degranulation elicited by neuromuscular blocking agents. Exp. Dermatol. 19, 302–304 (2010).

ArticleCASPubMedGoogle Scholar

Vasiadi, M., Kempuraj, D., Boucher, W., Kalogeromitros, D. & Theoharides, T. C. Progesterone inhibits mast cell secretion. Int. J. Immunopathol. Pharmacol. 19, 787–794 (2006).

ArticleCASPubMedGoogle Scholar

Guhl, S., Artuc, M., Zuberbier, T. & Babina, M. Testosterone exerts selective anti-inflammatory effects on human skin mast cells in a cell subset dependent manner. Exp. Dermatol. 21, 878–880 (2012).

ArticleCASPubMedGoogle Scholar

Laffont, S., Seillet, C. & Guéry, J. C. Estrogen receptor-dependent regulation of dendritic cell development and function. Front. Immunol. 8, 108 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Khaw, Y. M. et al. Estrogen receptor alpha signaling in dendritic cells modulates autoimmune disease phenotype in mice. EMBO Rep. 24, e54228 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Butts, C. L. et al. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gend. Med. 5, 434–447 (2008).

ArticlePubMedPubMed CentralGoogle Scholar

Mackern-Oberti, J. P., Jara, E. L., Riedel, C. A. & Kalergis, A. M. Hormonal modulation of dendritic cells differentiation, maturation and function: implications for the initiation and progress of systemic autoimmunity. Arch. Immunol. Ther. Exp. 65, 123–136 (2017).

ArticleCASGoogle Scholar

Yang, P. et al. Progesterone alters the activation and typing of the microglia in the optic nerve crush model. Exp. Eye Res. 212, 108805 (2021).

ArticleCASPubMedGoogle Scholar

Aryanpour, R. et al. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int. Immunopharmacol. 51, 131–139 (2017).

ArticleCASPubMedGoogle Scholar

Barreto, G., Veiga, S., Azcoitia, I., Garcia-Segura, L. M. & Garcia-Ovejero, D. Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone. Eur. J. Neurosci. 25, 3039–3046 (2007).

ArticlePubMedGoogle Scholar

O’Connor, J. L. & Nissen, J. C. The pathological activation of microglia is modulated by sexually dimorphic pathways. Int. J. Mol. Sci. 24, 4739 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Schumacher, M. et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front. Neurosci. 6, 10 (2012).

ArticlePubMedPubMed CentralGoogle Scholar

Giraud, S. N., Caron, C. M., Pham-Dinh, D., Kitabgi, P. & Nicot, A. B. Estradiol inhibits ongoing autoimmune neuroinflammation and NFκB-dependent CCL2 expression in reactive astrocytes. Proc. Natl Acad. Sci. USA 107, 8416–8421 (2010).

ArticleCASPubMedPubMed CentralGoogle Scholar

Dueñas, M. et al. Gonadal hormone regulation of insulin-like growth factor-I like immunoreactivity in hypothalamic astroglia of developing and adult rats. Neuroendocrinology 59, 528–538 (1994).

ArticlePubMedGoogle Scholar

Turniak-Kusy, M. et al. Testosterone inhibits secretion of the pro-inflammatory chemokine CXCL1 from astrocytes. Curr. Issues Mol. Biol. 46, 2105–2118 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Buendía-González, F. O. & Legorreta-Herrera, M. The similarities and differences between the effects of testosterone and DHEA on the innate and adaptive immune response. Biomolecules 12, 1768 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Zwahlen, M. & Stute, P. Impact of progesterone on the immune system in women: a systematic literature review. Arch. Gynecol. Obstet. 309, 37–46 (2024).

ArticleCASPubMedGoogle Scholar

Sciarra, F., Campolo, F., Franceschini, E., Carlomagno, F. & Venneri, M. A. Gender-specific impact of sex hormones on the immune system. Int. J. Mol. Sci. 24, 6302 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lakshmikanth, T. et al. Immune system adaptation during gender-affirming testosterone treatment. Nature 633, 155–164 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sellau, J., Groneberg, M. & Lotter, H. Androgen-dependent immune modulation in parasitic infection. Semin. Immunopathol. 41, 213–224 (2019).

ArticleCASPubMedGoogle Scholar

Cheung, A. S. et al. Approach to interpreting common laboratory pathology tests in transgender individuals. J. Clin. Endocrinol. Metab. 106, 893–901 (2021).

ArticlePubMedGoogle Scholar

Lim, H. Y. et al. Global coagulation assays in transgender women on oral and transdermal estradiol therapy. J. Clin. Endocrinol. Metab. 105, e2369–e2377 (2020).

ArticleGoogle Scholar

Dolladille, C. et al. Association between disease-modifying therapies prescribed to persons with multiple sclerosis and cancer: a WHO pharmacovigilance database analysis. Neurotherapeutics 18, 1657–1664 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Papadopoulos, D. et al. Disease-modifying treatments for multiple sclerosis have not affected the incidence of neoplasms in clinical trials over 3 decades: a meta-analysis with meta-regression. J. Neurol. 269, 3226–3237 (2022).

ArticlePubMedGoogle Scholar

Ghajarzadeh, M., Mohammadi, A. & Sahraian, M. A. Risk of cancer in multiple sclerosis (MS): a systematic review and meta-analysis. Autoimmun. Rev. 19, 102650 (2020).

ArticlePubMedGoogle Scholar

McFarlane, T., Zajac, J. D. & Cheung, A. S. Gender-affirming hormone therapy and the risk of sex hormone-dependent tumours in transgender individuals — a systematic review. Clin. Endocrinol. 89, 700–711 (2018).

ArticleCASGoogle Scholar

Bretherton, I. et al. Bone microarchitecture in transgender adults: a cross-sectional study. J. Bone Min. Res. 37, 643–648 (2022).

ArticleCASGoogle Scholar

Wiepjes, C. M. et al. Bone safety during the first ten years of gender-affirming hormonal treatment in transwomen and transmen. J. Bone Min. Res. 34, 447–454 (2019).

ArticleCASGoogle Scholar

Download references

Author information

Authors and Affiliations

Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia

Cassie Nesbitt, Anneke Van Der Walt, Helmut Butzkueven & Vilija G. Jokubaitis

Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia

Cassie Nesbitt, Anneke Van Der Walt, Helmut Butzkueven & Vilija G. Jokubaitis

Department of Neurology, Alfred Health, Melbourne, Victoria, Australia

Cassie Nesbitt, Anneke Van Der Walt, Helmut Butzkueven & Vilija G. Jokubaitis

Trans Health Research Group, Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia

Ada S. Cheung

Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia

Ada S. Cheung

Authors

Cassie Nesbitt

View author publications

You can also search for this author in PubMedGoogle Scholar

2. Anneke Van Der Walt

View author publications

You can also search for this author in PubMedGoogle Scholar

3. Helmut Butzkueven

View author publications

You can also search for this author in PubMedGoogle Scholar

4. Ada S. Cheung

View author publications

You can also search for this author in PubMedGoogle Scholar

5. Vilija G. Jokubaitis

View author publications

You can also search for this author in PubMedGoogle Scholar

Contributions

C.N. researched data for the article. All authors contributed substantially to discussion of the content. C.N., A.S.C. and V.G.J. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Cassie Nesbitt or Vilija G. Jokubaitis.

Ethics declarations

Competing interests

A.S.C. has received product from Besins Healthcare for investigator-initiated clinical studies using oestradiol and progesterone. No monetary support from Besins Healthcare has been received for any studies, and Besins Healthcare have had no input into study design, data analysis or writing of any manuscripts.

Peer review

Peer review information

Nature Reviews Neurology thanks Cole Harrington, Jorge Correale, Melinda Magyari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesbitt, C., Van Der Walt, A., Butzkueven, H. et al. Exploring the role of sex hormones and gender diversity in multiple sclerosis. Nat Rev Neurol (2024). https://doi.org/10.1038/s41582-024-01042-x

Download citation

Accepted:30 October 2024

Published:11 December 2024

DOI:https://doi.org/10.1038/s41582-024-01042-x

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page