nature.com

Remission from addiction: erasing the wrong circuits or making new ones?

Abstract

Chronic relapse is a hallmark of substance-use disorders (SUDs), but many people with SUDs do recover and eventually enter remission. Many preclinical studies in this field aim to identify interventions that can precipitate recovery by reversing or erasing the neuronal circuit changes caused by chronic drug use. A better understanding of remission from SUDs can also come from preclinical studies that model factors known to influence recovery in humans, such as the negative consequences of drug use and positive environmental influences. In this Perspective we discuss human neuroimaging studies that have provided information about recovery from SUDs and highlight mechanisms identified in preclinical studies — such as the reconfiguration of neuronal circuits — that could contribute to remission. We also analyse how studies of memory and forgetting can provide insights into the mechanisms of remission. Overall, we propose that remission can be driven by the introduction of new neuronal changes (which outcompete those induced by drugs) as well as by the erasure of drug-induced changes.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 print issues and online access

$189.00 per year

only $15.75 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Evolution of drug use.

Fig. 2: Drug intake, remission and social support involve overlapping circuits.

References

O’Brien, C. P. & McLellan, A. T. Myths about the treatment of addiction. Lancet 347, 237–240 (1996).

PubMedGoogle Scholar

Brecht, M. L. & Herbeck, D. Time to relapse following treatment for methamphetamine use: a long-term perspective on patterns and predictors. Drug. Alcohol Depend. 139, 18–25 (2014).

PubMedPubMed CentralGoogle Scholar

McLellan, A. T., Lewis, D. C., O’Brien, C. P. & Kleber, H. D. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. J. Am. Med. Assoc. 284, 1689–1695 (2000).

CASGoogle Scholar

Burman, S. The challenge of sobriety: natural recovery without treatment and self-help groups. J. Subst. Abus. 9, 41–61 (1997).

CASGoogle Scholar

Kelly, J. F., Greene, M. C., Bergman, B. G., White, W. L. & Hoeppner, B. B. How many recovery attempts does it take to successfully resolve an alcohol or drug problem? Estimates and correlates from a National Study of Recovering U.S. adults. Alcohol. Clin. Exp. Res. 43, 1533–1544 (2019).

PubMedPubMed CentralGoogle Scholar

SAMHSA’s working definition of recovery. SAMHSAhttps://store.samhsa.gov/sites/default/files/pep12-recdef.pdf (2012).

About Recovery. NIDAhttps://nida.nih.gov/research-topics/recovery#:~:Text=Recovery%20is%20a%20process%20of,This%20is%20called%20remission (2019).

International Classification of Diseases 11th Revision (ICD-11). World Health Organizationhttps://www.who.int/standards/classifications/classification-of-diseases (2021).

Robins, L. N. & Regier, D. A. (eds) Psychiatric Disorders In America: The Epidemiologic Catchment Area Study (Maxwell Macmillan International, 1991).

Heyman, G. M. Quitting drugs: quantitative and qualitative features. Annu. Rev. Clin. Psychol. 9, 29–59 (2013).

PubMedGoogle Scholar

Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

PubMedGoogle Scholar

Kessler, R. C. et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. results from the National Comorbidity Survey. Arch. Gen. Psychiatry 51, 8–19 (1994).

CASPubMedGoogle Scholar

Stinson, F. S. et al. Comorbidity between DSM-IV alcohol and specific drug use disorders in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Drug. Alcohol Depend. 80, 105–116 (2005).

PubMedGoogle Scholar

Jones, C. M., Noonan, R. K. & Compton, W. M. Prevalence and correlates of ever having a substance use problem and substance use recovery status among adults in the United States, 2018. Drug. Alcohol Depend. 214, 108169 (2020).

CASPubMedPubMed CentralGoogle Scholar

Fan, A. Z., Chou, S. P., Zhang, H., Jung, J. & Grant, B. F. Prevalence and correlates of past-year recovery from DSM-5 alcohol use disorder: results from National Epidemiologic Survey On Alcohol And Related Conditions III. Alcohol. Clin. Exp. Res. 43, 2406–2420 (2019).

PubMedGoogle Scholar

Key substance use and mental health indicators in the United States: results from the 2021 National Survey on Drug Use and Health. SAMHSA 64–72 https://www.samhsa.gov/data/sites/default/files/reports/rpt39443/2021NSDUHFFRRev010323.pdf (2022).

Lopez-Quintero, C. et al. Probability and predictors of remission from life-time nicotine, alcohol, cannabis or cocaine dependence: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Addiction 106, 657–669 (2011).

PubMedGoogle Scholar

Day, E., Manitsa, I., Farley, A. & Kelly, J. F. The UK National Recovery Survey: nationally representative survey of people overcoming a drug or alcohol problem. BJPsych Open 10, e67 (2024).

PubMedPubMed CentralGoogle Scholar

Pongsavee, K., Payakkakom, A., Phukao, D. & Guadamuz, T. E. Natural recovery from alcohol: a systematic review of the literature 2006–2019. J. Subst. Use 28, 166–171 (2023).

Google Scholar

Moos, R. H. & Finney, J. W. Commentary on Lopez-Quintero et al. (2011): remission and relapse — the yin–yang of addictive disorders. Addiction 106, 670–671 (2011).

PubMedGoogle Scholar

Witkiewitz, K., Pfund, R. A. & Tucker, J. A. Mechanisms of behavior change in substance use disorder with and without formal treatment. Annu. Rev. Clin. Psychol. 18, 497–525 (2022).

PubMedGoogle Scholar

Klingemann, H., Sobell, M. B. & Sobell, L. C. Continuities and changes in self-change research. Addiction 105, 1510–1518 (2010).

PubMedGoogle Scholar

Winick, C. S. Maturing out of narcotic addiction. Bull. Narc. 14, 1–7 (1962).

Google Scholar

Stall, R. & Biernacki, P. Spontaneous remission from the problematic use of substances: an inductive model derived from a comparative analysis of the alcohol, opiate, tobacco, and food/obesity literatures. Int. J. Addict. 21, 1–23 (1986).

CASPubMedGoogle Scholar

Sobell, L. C., Sobell, M. B., Toneatto, T. & Leo, G. I. What triggers the resolution of alcohol problems without treatment. Alcohol. Clin. Exp. Res. 17, 217–224, (1993).

CASPubMedGoogle Scholar

Waldorf, D. Natural recovery from addiction: some social-psychological processes of untreated recovery. J. Drug. Issues 13, 237–280 (1983).

Google Scholar

Heilig, M. et al. Addiction as a brain disease revised: why it still matters, and the need for consilience. Neuropsychopharmacology 46, 1715–1723 (2021).

PubMedPubMed CentralGoogle Scholar

Lamb, R. J., Stark, H. G. & Ginsburg, B. C. Implications of there being many paths to addiction and recovery. Pharmacol. Biochem. Behav. 211, 173299 (2021).

CASPubMedPubMed CentralGoogle Scholar

Godino, A. et al. Transcriptional control of nucleus accumbens neuronal excitability by retinoid X receptor alpha tunes sensitivity to drug rewards. Neuron 111, 1453–1467 e1457 (2023).

CASPubMedPubMed CentralGoogle Scholar

Kennedy, P. J. et al. Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat. Neurosci. 16, 434–440 (2013).

CASPubMedPubMed CentralGoogle Scholar

Li, Y. et al. Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction. Science 373, 1252–1256 (2021).

CASPubMedPubMed CentralGoogle Scholar

Pascoli, V. et al. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 564, 366–371 (2018).

CASPubMedGoogle Scholar

Nestler, E. J. & Luscher, C. The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron 102, 48–59 (2019).

CASPubMedPubMed CentralGoogle Scholar

Bordeaux, P. & Koob, G. F. Escaping Addiction: Resetting the Brain for Success (Rowman & Littlefield, 2023).

Balodis, I. M. et al. Neurofunctional reward processing changes in cocaine dependence during recovery. Neuropsychopharmacology 41, 2112–2121 (2016).

CASPubMedPubMed CentralGoogle Scholar

Yip, S. W., Scheinost, D., Potenza, M. N. & Carroll, K. M. Connectome-based prediction of cocaine abstinence. Am. J. Psychiatry 176, 156–164 (2019).

PubMedPubMed CentralGoogle Scholar

Parvaz, M. A., Rabin, R. A., Adams, F. & Goldstein, R. Z. Structural and functional brain recovery in individuals with substance use disorders during abstinence: a review of longitudinal neuroimaging studies. Drug. Alcohol Depend. 232, 109319 (2022).

PubMedPubMed CentralGoogle Scholar

Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669, (2011).

CASPubMedPubMed CentralGoogle Scholar

Maggioni, E. et al. Brain volumes in alcohol use disorder: do females and males differ? A whole-brain magnetic resonance imaging mega-analysis. Hum. Brain Mapp. 44, 4652–4666 (2023).

Spindler, C., Mallien, L., Trautmann, S., Alexander, N. & Muehlhan, M. A coordinate-based meta-analysis of white matter alterations in patients with alcohol use disorder. Transl. Psychiatry 12, 40 (2022).

PubMedPubMed CentralGoogle Scholar

Yang, X. et al. Cortical and subcortical gray matter shrinkage in alcohol-use disorders: a voxel-based meta-analysis. Neurosci. Biobehav. Rev. 66, 92–103 (2016).

CASPubMedGoogle Scholar

Garavan, H., Brennan, K. L., Hester, R. & Whelan, R. The neurobiology of successful abstinence. Curr. Opin. Neurobiol. 23, 668–674 (2013).

CASPubMedPubMed CentralGoogle Scholar

Hammond, C. J., Allick, A., Rahman, N. & Nanavati, J. Structural and functional neural targets of addiction treatment in adolescents and young adults: a systematic review and meta-analysis. J. Child. Adolesc. Psychopharmacol. 29, 498–507 (2019).

PubMedPubMed CentralGoogle Scholar

Costumero, V. et al. Distance disintegration characterizes node-level topological dysfunctions in cocaine addiction. Addict. Biol. 26, e13072 (2021).

PubMedGoogle Scholar

Zilverstand, A. et al. Whole-brain resting-state connectivity underlying impaired inhibitory control during early versus longer-term abstinence in cocaine addiction. Mol. Psychiatry 28, 3355–3364 (2023).

CASPubMedPubMed CentralGoogle Scholar

Huang, Y. et al. Association of cortico-striatal engagement during cue reactivity, reappraisal, and savoring of drug and non-drug stimuli with craving in heroin addiction. Am. J. Psychiatry 181, 153–165 (2024).

PubMedGoogle Scholar

Joutsa, J. et al. Brain lesions disrupting addiction map to a common human brain circuit. Nat. Med. 28, 1249–1255 (2022).

CASPubMedPubMed CentralGoogle Scholar

Fox, M. D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379, 2237–2245 (2018).

CASPubMedGoogle Scholar

Venniro, M., Banks, M. L., Heilig, M., Epstein, D. H. & Shaham, Y. Improving translation of animal models of addiction and relapse by reverse translation. Nat. Rev. Neurosci. 21, 625–643 (2020).

CASPubMedGoogle Scholar

Humphreys, K. & Bickel, W. K. Toward a neuroscience of long-term recovery from addiction. JAMA Psychiatry 75, 875–876 (2018).

PubMedGoogle Scholar

Ceceli, A. O., Bradberry, C. W. & Goldstein, R. Z. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology 47, 276–291 (2022).

PubMedGoogle Scholar

Bischof, G., Rumpf, H. J., Hapke, U., Meyer, C. & John, U. Factors influencing remission from alcohol dependence without formal help in a representative population sample. Addiction 96, 1327–1336 (2001).

CASPubMedGoogle Scholar

Scherbaum, N. & Specka, M. Factors influencing the course of opiate addiction. Int. J. Meth. Psychiatric Res. 17, S39–S44 (2008).

Google Scholar

Granfield, R. & Cloud, W. Social context and “natural recovery”: the role of social capital in the resolution of drug-associated problems. Subst. Use Misuse 36, 1543–1570 (2001).

CASPubMedGoogle Scholar

Acuff, S. F., MacKillop, J. & Murphy, J. G. A contextualized reinforcer pathology approach to addiction. Nat. Rev. Psychol. 2, 309–323 (2023).

PubMedPubMed CentralGoogle Scholar

Pickard, H. & Ahmed, S. H. in Addiction and Choice: Rethinking the Relationship 29–48 (Oxford Univ. Press, 2017).

Engeln, M. & Ahmed, S. H. The multiple faces of footshock punishment in animal research on addiction. Neurobiol. Learn. Mem. 213, 107955 (2024).

PubMedGoogle Scholar

Kim, C. K. et al. Molecular and circuit-dynamical identification of top-down neural mechanisms for restraint of reward seeking. Cell 170, 1013–1027.e1014 (2017).

CASPubMedPubMed CentralGoogle Scholar

Park, J. & Moghaddam, B. Risk of punishment influences discrete and coordinated encoding of reward-guided actions by prefrontal cortex and VTA neurons. eLife 6, e30056 (2017).

PubMedPubMed CentralGoogle Scholar

Bellone, C., Loureiro, M. & Luscher, C. Drug-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area. Cold Spring Harb. Perspect. Med. 11, a039701 (2021).

CASPubMedPubMed CentralGoogle Scholar

Lammel, S., Ion, D. I., Roeper, J. & Malenka, R. C. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70, 855–862 (2011).

CASPubMedPubMed CentralGoogle Scholar

de Jong, J. W. et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101, 133–151.e137 (2019).

PubMedGoogle Scholar

Zhou, K. et al. Reward and aversion processing by input-defined parallel nucleus accumbens circuits in mice. Nat. Commun. 13, 6244 (2022).

CASPubMedPubMed CentralGoogle Scholar

Vollmer, K. M. et al. An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice. Nat. Commun. 13, 6865 (2022).

CASPubMedPubMed CentralGoogle Scholar

Choi, E. A., Jean-Richard-Dit-Bressel, P., Clifford, C. W. G. & McNally, G. P. Paraventricular thalamus controls behavior during motivational conflict. J. Neurosci. 39, 4945–4958 (2019).

CASPubMedPubMed CentralGoogle Scholar

Choi, E. A. & McNally, G. P. Paraventricular thalamus balances danger and reward. J. Neurosci. 37, 3018–3029 (2017).

CASPubMedPubMed CentralGoogle Scholar

King, S. G. et al. Prefrontal-habenular microstructural impairments in human cocaine and heroin addiction. Neuron 110, 3820–3832.e3824 (2022).

CASPubMedPubMed CentralGoogle Scholar

Mathis, V. & Kenny, P. J. From controlled to compulsive drug-taking: the role of the habenula in addiction. Neurosci. Biobehav. Rev. 106, 102–111 (2019).

PubMedGoogle Scholar

Meye, F. J. et al. Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse. Nat. Neurosci. 19, 1019–1024 (2016).

CASPubMedGoogle Scholar

Ables, J. L., Park, K. & Ibanez-Tallon, I. Understanding the habenula: a major node in circuits regulating emotion and motivation. Pharmacol. Res. 190, 106734 (2023).

PubMedPubMed CentralGoogle Scholar

Goldstein, R. Z. et al. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proc. Natl Acad. Sci. USA 106, 9453–9458 (2009).

CASPubMedPubMed CentralGoogle Scholar

Goldstein, R. Z. et al. Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am. J. Psychiatry 164, 43–51 (2007).

PubMedPubMed CentralGoogle Scholar

Jean-Richard-Dit-Bressel, P., Killcross, S. & McNally, G. P. Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders. Neuropsychopharmacology 43, 1639–1650 (2018).

PubMedPubMed CentralGoogle Scholar

Ma, C. et al. Medial orbitofrontal cortex regulates instrumental conditioned punishment, but not pavlovian conditioned fear. Cereb. Cortex Commun. 1, tgaa039 (2020).

PubMedPubMed CentralGoogle Scholar

Orsini, C. A., Trotta, R. T., Bizon, J. L. & Setlow, B. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment. J. Neurosci. 35, 1368–1379 (2015).

CASPubMedPubMed CentralGoogle Scholar

Cadet, J. L., Patel, R. & Jayanthi, S. Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: epigenetic and transcriptional consequences in the rat brain. Pharmacol. Biochem. Behav. 179, 98–108 (2019).

CASPubMedGoogle Scholar

Torres, O. V., Jayanthi, S., McCoy, M. T. & Cadet, J. L. Selective activation of striatal NGF-TrkA/p75NTR/MAPK intracellular signaling in rats that show suppression of methamphetamine intake 30 days following drug abstinence. Int. J. Neuropsychopharmacol. 21, 281–290 (2018).

CASPubMedGoogle Scholar

Swanson, A. M., DePoy, L. M. & Gourley, S. L. Inhibiting Rho kinase promotes goal-directed decision making and blocks habitual responding for cocaine. Nat. Commun. 8, 1861 (2017).

PubMedPubMed CentralGoogle Scholar

Blackwood, C. A., McCoy, M. T., Ladenheim, B. & Cadet, J. L. Escalated oxycodone self-administration and punishment: differential expression of opioid receptors and immediate early genes in the rat dorsal striatum and prefrontal cortex. Front. Neurosci. 13, 1392 (2019).

PubMedGoogle Scholar

McClung, C. A. et al. DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res. Mol. Brain Res. 132, 146–154 (2004).

CASPubMedGoogle Scholar

Nestler, E. J. FosB: a transcriptional regulator of stress and antidepressant responses. Eur. J. Pharmacol. 753, 66–72 (2015).

CASPubMedGoogle Scholar

Renthal, W. et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62, 335–348 (2009).

CASPubMedPubMed CentralGoogle Scholar

Pitchers, K. K. et al. Natural and drug rewards act on common neural plasticity mechanisms with DeltaFosB as a key mediator. J. Neurosci. 33, 3434–3442 (2013).

CASPubMedPubMed CentralGoogle Scholar

Cadet, J. L. et al. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence. Mol. Psychiatry 22, 1196–1204 (2017).

CASPubMedGoogle Scholar

Pascoli, V. et al. Cell-type specific synaptic plasticity in dorsal striatum is associated with punishment-resistance compulsive-like cocaine self-administration in mice. Neuropsychopharmacology 48, 448–458 (2023).

CASPubMedGoogle Scholar

Krasnova, I. N. et al. Incubation of methamphetamine and palatable food craving after punishment-induced abstinence. Neuropsychopharmacology 39, 2008–2016 (2014).

CASPubMedPubMed CentralGoogle Scholar

Negishi, K., Fredriksson, I., Bossert, J. M., Zangen, A. & Shaham, Y. Relapse after electric barrier-induced voluntary abstinence: a review. Curr. Opin. Neurobiol. 86, 102856 (2024).

CASPubMedGoogle Scholar

Hill, K., Bodurtha, P. J., Winkelman, T. N. A. & Howell, B. A. Postrelease risk of overdose and all-cause death among persons released from jail or prison: minnesota, March 2020–December 2021. Am. J. Public. Health 114, 913–922 (2024).

PubMedGoogle Scholar

Joudrey, P. J. et al. A conceptual model for understanding post-release opioid-related overdose risk. Addict. Sci. Clin. Pract. 14, 17 (2019).

PubMedPubMed CentralGoogle Scholar

Strang, J. Death matters: understanding heroin/opiate overdose risk and testing potential to prevent deaths. Addiction 110, 27–35 (2015).

PubMedGoogle Scholar

DuPont, R. L., McLellan, A. T., White, W. L., Merlo, L. J. & Gold, M. S. Setting the standard for recovery: physicians’ health programs. J. Subst. Abus. Treat. 36, 159–171 (2009).

Google Scholar

Fuller, R. K. et al. Disulfiram treatment of alcoholism. A Veterans Administration cooperative study. JAMA 256, 1449–1455 (1986).

CASPubMedGoogle Scholar

Chen, B. T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).

CASPubMedGoogle Scholar

Pascoli, V., Terrier, J., Hiver, A. & Luscher, C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054–1066 (2015).

CASPubMedGoogle Scholar

Durand, A., Girardeau, P., Freese, L. & Ahmed, S. H. Increased responsiveness to punishment of cocaine self-administration after experience with high punishment. Neuropsychopharmacology 47, 444–453 (2022).

CASPubMedGoogle Scholar

Domi, E. et al. Activation of GABA(B) receptors in central amygdala attenuates activity of PKCdelta + neurons and suppresses punishment-resistant alcohol self-administration in rats. Neuropsychopharmacology 48, 1386–1395 (2023).

CASPubMedPubMed CentralGoogle Scholar

Giuliano, C., Belin, D. & Everitt, B. J. Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior. J. Neurosci. 39, 1744–1754 (2019).

CASPubMedPubMed CentralGoogle Scholar

Lee, S. M. et al. Nociceptive stimuli activate the hypothalamus-habenula circuit to inhibit the mesolimbic reward system and cocaine seeking-behaviors. J. Neurosci. 42, 9180–9192 (2022).

McNally, G. P., Jean-Richard-Dit-Bressel, P., Millan, E. Z. & Lawrence, A. J. Pathways to the persistence of drug use despite its adverse consequences. Mol. Psychiatry 28, 2228–2237 (2023).

Pickard, H. & Ahmed, S. H. The Routledge Handbook of Philosophy and Science of Addiction (Routledge, 2018).

Jean-Richard-Dit-Bressel, P., Ma, C., Bradfield, L. A., Killcross, S. & McNally, G. P. Punishment insensitivity emerges from impaired contingency detection, not aversion insensitivity or reward dominance. eLife 8, e52765 (2019).

CASPubMedPubMed CentralGoogle Scholar

Marchant, N. J., Khuc, T. N., Pickens, C. L., Bonci, A. & Shaham, Y. Context-induced relapse to alcohol seeking after punishment in a rat model. Biol. Psychiatry 73, 256–262 (2013).

CASPubMedGoogle Scholar

Ghareh, H. et al. Role of anterior insula cortex in context-induced relapse of nicotine-seeking. eLife 11, e75609 (2022).

CASPubMedPubMed CentralGoogle Scholar

Sinha, R. Modeling relapse situations in the human laboratory. Curr. Top. Behav. Neurosci. 13, 379–402 (2013).

PubMedPubMed CentralGoogle Scholar

McDonald, A. J. et al. Alcohol seeking under risk of punishment is associated with activation of cortical and subcortical brain regions. Front. Behav. Neurosci. 15, 739681 (2021).

CASPubMedPubMed CentralGoogle Scholar

Choi, E. A. et al. A corticothalamic circuit trades off speed for safety during decision-making under motivational conflict. J. Neurosci. 42, 3473–3483 (2022).

CASPubMedPubMed CentralGoogle Scholar

Wang, T. et al. Paraventricular thalamus dynamically modulates aversive memory via tuning prefrontal inhibitory circuitry. J. Neurosci. 43, 3630–3646 (2023).

CASPubMedPubMed CentralGoogle Scholar

McNally, G. P. Motivational competition and the paraventricular thalamus. Neurosci. Biobehav. Rev. 125, 193–207 (2021).

PubMedGoogle Scholar

Hennigan, K., D’Ardenne, K. & McClure, S. M. Distinct midbrain and habenula pathways are involved in processing aversive events in humans. J. Neurosci. 35, 198–208 (2015).

CASPubMedPubMed CentralGoogle Scholar

Hsu, D. T., Kirouac, G. J., Zubieta, J. K. & Bhatnagar, S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front. Behav. Neurosci. 8, 73 (2014).

PubMedPubMed CentralGoogle Scholar

Jensen, J. et al. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40, 1251–1257 (2003).

CASPubMedGoogle Scholar

Ahmed, S. H. Imbalance between drug and non-drug reward availability: a major risk factor for addiction. Eur. J. Pharmacol. 526, 9–20 (2005).

CASPubMedGoogle Scholar

Venniro, M. et al. The protective effect of social reward on opioid and psychostimulant reward and relapse: behavior, pharmacology, and brain regions. J. Neurosci. 42, 9298–9314 (2022).

CASPubMedPubMed CentralGoogle Scholar

Venniro, M., Panlilio, L. V., Epstein, D. H. & Shaham, Y. The protective effect of operant social reward on cocaine self-administration, choice, and relapse is dependent on delay and effort for the social reward. Neuropsychopharmacology 46, 2350–2357 (2021).

CASPubMedPubMed CentralGoogle Scholar

Venniro, M. et al. Volitional social interaction prevents drug addiction in rat models. Nat. Neurosci. 21, 1520–1529 (2018).

CASPubMedPubMed CentralGoogle Scholar

Grimm, J. W., Hope, B. T., Wise, R. A. & Shaham, Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412, 141–142, (2001).

CASPubMedPubMed CentralGoogle Scholar

de Boer, S. F., Buwalda, B. & Koolhaas, J. M. Untangling the neurobiology of coping styles in rodents: towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci. Biobehav. Rev. 74, 401–422 (2017).

PubMedGoogle Scholar

Krach, S., Paulus, F. M., Bodden, M. & Kircher, T. The rewarding nature of social interactions. Front. Behav. Neurosci. 4, 22 (2010).

PubMedPubMed CentralGoogle Scholar

Schweinfurth, M. K. The social life of Norway rats (Rattus norvegicus). eLife 9, e54020 (2020).

PubMedPubMed CentralGoogle Scholar

El Rawas, R. et al. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction. Front. Behav. Neurosci. 6, 63 (2012).

PubMedPubMed CentralGoogle Scholar

Leong, K. C., Cox, S., King, C., Becker, H. & Reichel, C. M. Oxytocin and rodent models of addiction. Int. Rev. Neurobiol. 140, 201–247 (2018).

CASPubMedPubMed CentralGoogle Scholar

Tomova, L. et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nat. Neurosci. 23, 1597–1605 (2020).

CASPubMedPubMed CentralGoogle Scholar

Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

CASPubMedPubMed CentralGoogle Scholar

Hung, L. W. et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 357, 1406–1411 (2017).

CASPubMedPubMed CentralGoogle Scholar

Dolen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).

PubMedPubMed CentralGoogle Scholar

Ibragimov, R., Kovacs, G. L., Szabo, G. & Telegdy, G. Microinjection of oxytocin into limbic-mesolimbic brain structures disrupts heroin self-administration behavior: a receptor-mediated event? Life Sci. 41, 1265–1271 (1987).

CASPubMedGoogle Scholar

Weber, R. A. et al. Regionally specific effects of oxytocin on reinstatement of cocaine seeking in male and female rats. Int. J. Neuropsychopharmacol. 21, 677–686 (2018).

CASPubMedPubMed CentralGoogle Scholar

Venniro, M. et al. Abstinence-dependent dissociable central amygdala microcircuits control drug craving. Proc. Natl Acad. Sci. USA 117, 8126–8134 (2020).

CASPubMedPubMed CentralGoogle Scholar

Domi, E. et al. A neural substrate of compulsive alcohol use. Sci. Adv. 7, eabg9045 (2021).

CASPubMedPubMed CentralGoogle Scholar

Marchant, N. J. et al. Rats choose alcohol over social reward in an operant choice procedure. Neuropsychopharmacology 48, 585–593 (2023).

Augier, G. et al. Wistar rats choose alcohol over social interaction in a discrete-choice model. Neuropsychopharmacology 49, 1098–1107 (2022).

Google Scholar

Chow, J. J. et al. Characterization of operant social interaction in rats: effects of access duration, effort, peer familiarity, housing conditions, and choice between social interaction vs. food or remifentanil. Psychopharmacology 239, 2093–2108 (2022).

CASPubMedPubMed CentralGoogle Scholar

Alexander, B. K., Beyerstein, B. L., Hadaway, P. F. & Coambs, R. B. Effect of early and later colony housing on oral ingestion of morphine in rats. Pharmacol. Biochem. Behav. 15, 571–576 (1981).

CASPubMedGoogle Scholar

Smith, M. A. Peer influences on drug self-administration: social facilitation and social inhibition of cocaine intake in male rats. Psychopharmacology 224, 81–90 (2012).

CASPubMedPubMed CentralGoogle Scholar

Papamihali, K. et al. Convenience and comfort: reasons reported for using drugs alone among clients of harm reduction sites in British Columbia, Canada. Harm Reduct. J. 17, 90 (2020).

PubMedPubMed CentralGoogle Scholar

Roe, L. et al. Isolation, solitude and social distancing for people who use drugs: an ethnographic perspective. Front. Psychiatry 11, 623032 (2020).

PubMedGoogle Scholar

Strickland, J. C. & Acuff, S. F. Role of social context in addiction etiology and recovery. Pharmacol. Biochem. Behav. 229, 173603 (2023).

CASPubMedPubMed CentralGoogle Scholar

Pelloux, Y., Giorla, E., Montanari, C. & Baunez, C. Social modulation of drug use and drug addiction. Neuropharmacology 159, 107545 (2019).

CASPubMedGoogle Scholar

Mayock, P. & Butler, S. “I’m always hiding and ducking and diving”: the stigma of growing older on methadone. Drugs Educ. Prev. Policy 29, 139–149 (2022).

Google Scholar

Engeln, M., Fox, M. E. & Lobo, M. K. Housing conditions during self-administration determine motivation for cocaine in mice following chronic social defeat stress. Psychopharmacology 238, 41–54 (2021).

CASPubMedGoogle Scholar

Heilig, M., Epstein, D. H., Nader, M. A. & Shaham, Y. Time to connect: bringing social context into addiction neuroscience. Nat. Rev. Neurosci. 17, 592–599 (2016).

CASPubMedPubMed CentralGoogle Scholar

Scheggia, D. et al. Reciprocal cortico-amygdala connections regulate prosocial and selfish choices in mice. Nat. Neurosci. 25, 1505–1518 (2022).

CASPubMedPubMed CentralGoogle Scholar

Rabin, R. A., Parvaz, M. A., Alia-Klein, N. & Goldstein, R. Z. Emotion recognition in individuals with cocaine use disorder: the role of abstinence length and the social brain network. Psychopharmacology 239, 1019–1033 (2022).

CASPubMedGoogle Scholar

Chang, V. N. & Peters, J. Neural circuits controlling choice behavior in opioid addiction. Neuropharmacology 226, 109407 (2023).

CASPubMedGoogle Scholar

Lenoir, M. et al. Large-scale brain correlates of sweet versus cocaine reward in rats. Eur. J. Neurosci. 57, 423–439 (2023).

CASPubMedGoogle Scholar

Haubrich, J. & Nader, K. in Behavioral Neuroscience of Learning and Memory (eds Clark, R. E. & Martin, S. J.) 151–176 (Springer International Publishing, 2018).

Bernabo, M., Haubrich, J., Gamache, K. & Nader, K. Memory destabilization and reconsolidation dynamically regulate the PKMζ maintenance mechanism. J. Neurosci. 41, 4880–4888 (2021).

CASPubMedPubMed CentralGoogle Scholar

Huang, Y. H. et al. In vivo cocaine experience generates silent synapses. Neuron 63, 40–47 (2009).

CASPubMedPubMed CentralGoogle Scholar

Wright, W. J. & Dong, Y. Silent synapses in cocaine-associated memory and beyond. J. Neurosci. 41, 9275–9285 (2021).

CASPubMedPubMed CentralGoogle Scholar

Engeln, M. et al. Transcriptome profiling of the ventral pallidum reveals a role for pallido-thalamic neurons in cocaine reward. Mol. Psychiatry 27, 3980–3991 (2022).

CASPubMedPubMed CentralGoogle Scholar

Finkelstein, A. B. et al. Social reactivation of fear engrams enhances memory recall. Proc. Natl Acad. Sci. USA 119, e2114230119 (2022).

CASPubMedPubMed CentralGoogle Scholar

Smith, K. E. Disease and decision. J. Subst. Abus. Treat. 142, 108874 (2022).

CASGoogle Scholar

Lim, D. H., Yoon, Y. J., Her, E., Huh, S. & Jung, M. W. Active maintenance of eligibility trace in rodent prefrontal cortex. Sci. Rep. 10, 18860 (2020).

CASPubMedPubMed CentralGoogle Scholar

Liu, X. et al. Memory consolidation drives the enhancement of remote cocaine memory via prefrontal circuit. Mol. Psychiatry 29, 730–741 (2024).

PubMedGoogle Scholar

Kober, H. et al. Prefrontal–striatal pathway underlies cognitive regulation of craving. Proc. Natl Acad. Sci. USA 107, 14811–14816 (2010).

CASPubMedPubMed CentralGoogle Scholar

Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and non-reinforcement. In Classical Conditioning: Current Research and Theory Vol. 2 (eds Black, A. H. & Prokasy, W. F.) 64–69 (Appleton-Century-Crofts, 1972).

Pedreira, M. E., Perez-Cuesta, L. M. & Maldonado, H. Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learn. Mem. 11, 579–585, (2004).

PubMedPubMed CentralGoogle Scholar

Kendler, K. S. & Woodward, J. Top-down causation in psychiatric disorders: a clinical-philosophical inquiry. Psychol. Med. 51, 1783–1788 (2021).

PubMedGoogle Scholar

Milton, A. L. & Everitt, B. J. The psychological and neurochemical mechanisms of drug memory reconsolidation: implications for the treatment of addiction. Eur. J. Neurosci. 31, 2308–2319, (2010).

PubMedGoogle Scholar

Pachas, G. N. et al. Single dose propranolol does not affect physiologic or emotional reactivity to smoking cues. Psychopharmacology 232, 1619–1628 (2015).

CASPubMedGoogle Scholar

Xue, Y. X. et al. Effect of selective inhibition of reactivated nicotine-associated memories with propranolol on nicotine craving. JAMA Psychiatry 74, 224–232, (2017).

PubMedPubMed CentralGoogle Scholar

Lonergan, M. et al. Reactivating addiction-related memories under propranolol to reduce craving: a pilot randomized controlled trial. J. Behav. Ther. Exp. Psychiatry 50, 245–249 (2016).

PubMedGoogle Scholar

Jobes, M. L. et al. Effects of prereactivation propranolol on cocaine craving elicited by imagery script/cue sets in opioid-dependent polydrug users: a randomized study. J. Addict. Med. 9, 491–498 (2015).

CASPubMedPubMed CentralGoogle Scholar

Bornstein, A. M. & Pickard, H. “Chasing the first high”: memory sampling in drug choice. Neuropsychopharmacology 45, 907–915 (2020).

PubMedPubMed CentralGoogle Scholar

Davis, R. L. & Zhong, Y. The biology of forgetting—a perspective. Neuron 95, 490–503 (2017).

CASPubMedPubMed CentralGoogle Scholar

Gallo, F. T. et al. Dopamine modulates adaptive forgetting in medial prefrontal cortex. J. Neurosci. 42, 6620–6636 (2022).

CASPubMedPubMed CentralGoogle Scholar

Kerchner, G. A. & Nicoll, R. A. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 9, 813–825 (2008).

CASPubMedPubMed CentralGoogle Scholar

Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014).

CASPubMedPubMed CentralGoogle Scholar

Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

CASPubMedPubMed CentralGoogle Scholar

Yetton, B. D., Cai, D. J., Spoormaker, V. I., Silva, A. J. & Mednick, S. C. Human memories can be linked by temporal proximity. Front. Hum. Neurosci. 13, 315 (2019).

PubMedPubMed CentralGoogle Scholar

Koob, G. F., Sanna, P. P. & Bloom, F. E. Neuroscience of addiction. Neuron 21, 467–476 (1998).

CASPubMedGoogle Scholar

Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).

PubMedGoogle Scholar

Schlag, A. K. Percentages of problem drug use and their implications for policy making: a review of the literature. Drug. Sci. Policy Law 6, 2050324520904540 (2020).

Google Scholar

Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229–238 (2013).

CASPubMedPubMed CentralGoogle Scholar

Piantadosi, P. T., Yeates, D. C. M., Wilkins, M. & Floresco, S. B. Contributions of basolateral amygdala and nucleus accumbens subregions to mediating motivational conflict during punished reward-seeking. Neurobiol. Learn. Mem. 140, 92–105 (2017).

PubMedGoogle Scholar

Leong, K. C. et al. Oxytocin reduces cocaine cued Fos activation in a regionally specific manner. Int. J. Neuropsychopharmacol. 20, 844–854 (2017).

CASPubMedPubMed CentralGoogle Scholar

Lenoir, M., Engeln, M., Navailles, S., Girardeau, P. & Ahmed, S. H. A large-scale c-Fos brain mapping study on extinction of cocaine-primed reinstatement. Neuropsychopharmacology 49, 1459–1467 (2024).

CASPubMedGoogle Scholar

Pelloux, Y., Minier-Toribio, A., Hoots, J. K., Bossert, J. M. & Shaham, Y. Opposite effects of basolateral amygdala inactivation on context-induced relapse to cocaine seeking after extinction versus punishment. J. Neurosci. 38, 51–59 (2018).

CASPubMedPubMed CentralGoogle Scholar

Diniz, C. & Crestani, A. P. The times they are a-changin’: a proposal on how brain flexibility goes beyond the obvious to include the concepts of “upward” and “downward” to neuroplasticity. Mol. Psychiatry 28, 977–992 (2023).

PubMedGoogle Scholar

Bozon, B., Davis, S. & Laroche, S. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40, 695–701 (2003).

CASPubMedGoogle Scholar

Chandra, R. et al. Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine-mediated regulation of Tiam1. Front. Mol. Neurosci. 6, 13 (2013).

CASPubMedPubMed CentralGoogle Scholar

Tu, G. et al. Dopamine D1 and D2 receptors differentially regulate Rac1 and Cdc42 signaling in the nucleus accumbens to modulate behavioral and structural plasticity after repeated methamphetamine treatment. Biol. Psychiatry 86, 820–835 (2019).

CASPubMedGoogle Scholar

Roesler, R. Molecular mechanisms controlling protein synthesis in memory reconsolidation. Neurobiol. Learn. Mem. 142, 30–40 (2017).

CASPubMedGoogle Scholar

Barak, S. & Goltseker, K. Targeting the reconsolidation of licit drug memories to prevent relapse: focus on alcohol and nicotine. Int. J. Mol. Sci. 22, 4090 (2021).

CASPubMedPubMed CentralGoogle Scholar

Chamberlain, S. R., Muller, U., Blackwell, A. D., Robbins, T. W. & Sahakian, B. J. Noradrenergic modulation of working memory and emotional memory in humans. Psychopharmacology 188, 397–407 (2006).

CASPubMedGoogle Scholar

Otis, J. M. & Mueller, D. Reversal of cocaine-associated synaptic plasticity in medial prefrontal cortex parallels elimination of memory retrieval. Neuropsychopharmacology 42, 2000–2010 (2017).

CASPubMedPubMed CentralGoogle Scholar

Akirav, I. & Maroun, M. Stress modulation of reconsolidation. Psychopharmacology 226, 747–761, (2013).

CASPubMedGoogle Scholar

Haubrich, J., Bernabo, M. & Nader, K. Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. eLife 9, e57010 (2020).

CASPubMedPubMed CentralGoogle Scholar

Sanchez Beisel, J. M., Maza, F. J., Justel, N., Fernandez Larrosa, P. N. & Delorenzi, A. Embodiment of an emotional state concurs with a stress-induced reconsolidation impairment effect on an auditory verbal word-list memory. Neuroscience 497, 239–256 (2022).

CASPubMedGoogle Scholar

Goltseker, K., Handrus, H. & Barak, S. Disruption of relapse to alcohol seeking by aversive counterconditioning following memory retrieval. Addict. Biol. 26, e12935 (2021).

PubMedGoogle Scholar

Goltseker, K., Bolotin, L. & Barak, S. Counterconditioning during reconsolidation prevents relapse of cocaine memories. Neuropsychopharmacology 42, 716–726 (2017).

CASPubMedGoogle Scholar

Download references

Acknowledgements

This work was supported by the French Research Council (CNRS), the Université de Bordeaux, the French National Agency (ANR-22-CE37-0004 to M.E. and ANR-19-CE37-0013 to S.H.A.) and IReSP/INCa (SPAV1-22-003 to S.H.A.).

Author information

Authors and Affiliations

Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France

Michel Engeln & Serge H. Ahmed

Authors

Michel Engeln

View author publications

You can also search for this author in PubMedGoogle Scholar

2. Serge H. Ahmed

View author publications

You can also search for this author in PubMedGoogle Scholar

Contributions

M.E. researched data for the article. Both authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michel Engeln.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Yan Dong, Yavin Shaham, Yingjie Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engeln, M., Ahmed, S.H. Remission from addiction: erasing the wrong circuits or making new ones?. Nat. Rev. Neurosci. (2024). https://doi.org/10.1038/s41583-024-00886-y

Download citation

Accepted:07 November 2024

Published:11 December 2024

DOI:https://doi.org/10.1038/s41583-024-00886-y

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page