The operation of the new organic semiconductor sensor relies on a process known as "p-doping," where oxygen molecules increase the concentration of positive electrical charges in the active material. When hydrogen is present, it reacts with the oxygen, reversing this effect and causing a rapid drop in electrical current. This change is fast and reversible at room temperature up to 120 °C.
The sensor was tested in various real-world scenarios, including detecting leaks from pipes, monitoring hydrogen diffusion in closed rooms following an abrupt release, and even being mounted on a drone for airborne leak detection. In all cases, the sensor proved faster than portable commercial detector, demonstrating its potential for widespread use in homes, industries, and transport networks.
Importantly, the sensor can be made ultra-thin and flexible and could also be integrated into smart devices, enabling continuous distributed monitoring of hydrogen systems in real time.
The team is now focusing on advancing the sensor further while assessing its long-term stability in different sensing scenarios.