nature.com

Role of epigenetics in paediatric cancer pathogenesis & drug resistance

Abstract

Paediatric oncogenesis is tightly intertwined with errors in developmental processes involving cell specification and differentiation, which are governed by intricate temporal epigenetic signals. As paediatric cancers are characterised by a low number of somatic mutations, dysregulated chromatin landscapes are believed to be key drivers of oncogenesis. Epigenetic dysregulation is induced by mutations and aberrant expression of histones and epigenetic regulatory genes, to altered DNA methylation patterns and dysregulated noncoding RNA expression. In this review, we discuss epigenetic alterations in paediatric cancer oncogenesis and recurrence, and their potential as diagnostic biomarkers. We also discuss various epigenetic drugs that have entered clinical trials for aggressive paediatric cancers. Targeting paediatric-specific epigenetic vulnerabilities may improve recurrence-free survival in high-risk cancers.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Subscribe to this journal

Receive 24 print issues and online access

$259.00 per year

only $10.79 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Common histone mutations in paediatric cancers.

Fig. 2: SWI/SNF complexes and their antagonistic relationship with PRC2.

Fig. 3: Schematic of miRNAs, lncRNAs, and circRNAs in paediatric oncogenesis.

Fig. 4: Epigenetic mechanisms involved in drug resistance of paediatric cancers.

References

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

PubMedGoogle Scholar

Johnston WT, Erdmann F, Newton R, Steliarova-Foucher E, Schüz J, Roman E. Childhood cancer: estimating regional and global incidence. Cancer Epidemiol. 2021;71:101662.

CASPubMedGoogle Scholar

Laetsch TW, DuBois SG, Bender JG, Macy ME, Moreno L. Opportunities and challenges in drug development for pediatric cancers. Cancer Discov. 2021;11:545–59.

CASPubMedGoogle Scholar

Funakoshi Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, et al. Pediatric glioma: an update of diagnosis, biology, and treatment. Cancers. 2021;13:758.

CASPubMedPubMed CentralGoogle Scholar

Khan T, Stewart M, Blackman S, Rousseau R, Donoghue M, Cohen K, et al. Accelerating pediatric cancer drug development: challenges and opportunities for pediatric master protocols. Ther Innov Regul Sci. 2019;53:270–8.

PubMedGoogle Scholar

Williams AM, Liu Q, Bhakta N, Krull KR, Hudson MM, Robison LL, et al. Rethinking success in pediatric oncology: beyond 5-year survival. J Clin Oncol. 2021;39:2227–31.

PubMedPubMed CentralGoogle Scholar

Yeh JM, Ward ZJ, Chaudhry A, Liu Q, Yasui Y, Armstrong GT, et al. Life expectancy of adult survivors of childhood cancer over 3 decades. JAMA Oncol. 2020;6:350–7.

PubMedGoogle Scholar

Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, Hong AL, et al. A first-generation pediatric cancer dependency map. Nat Genet. 2021;53:529–38.

CASPubMedPubMed CentralGoogle Scholar

Smith CM, Catchpoole D, Hutvagner G. Non-coding RNAs in pediatric solid tumors. Front Genet. 2019;10:798.

CASPubMedPubMed CentralGoogle Scholar

Sweet-Cordero EA, Biegel JA. The genomic landscape of pediatric cancers: implications for diagnosis and treatment. Science. 2019;363:1170–5.

CASPubMedPubMed CentralGoogle Scholar

Panditharatna E, Filbin MG. The growing role of epigenetics in childhood cancers. Curr Opin Pediatr. 2020;32:67–75.

PubMedGoogle Scholar

Amatori S, Tavolaro S, Gambardella S, Fanelli M. The dark side of histones: genomic organization and role of oncohistones in cancer. Clin Epigenetics. 2021;13:71.

CASPubMedPubMed CentralGoogle Scholar

Mohammad F, Helin K. Oncohistones: drivers of pediatric cancers. Genes Dev. 2017;31:2313–24.

CASPubMedPubMed CentralGoogle Scholar

Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ, Stadler S, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 2010;140:678–91.

CASPubMedPubMed CentralGoogle Scholar

Shi L, Wen H, Shi X. The histone variant H3.3 in transcriptional regulation and human disease. J Mol Biol. 2017;429:1934–45.

CASPubMedGoogle Scholar

Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–31.

CASPubMedGoogle Scholar

Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in paediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44:251–3.

CASPubMedPubMed CentralGoogle Scholar

Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014;46:444–50.

CASPubMedPubMed CentralGoogle Scholar

Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32:520–37.e5.

CASPubMedPubMed CentralGoogle Scholar

Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW, Kool M, et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell. 2013;24:660–72.

CASPubMedGoogle Scholar

Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340:857–61.

CASPubMedPubMed CentralGoogle Scholar

Bočkaj I, Martini TEI, de Camargo Magalhães ES, Bakker PL, Meeuwsen-de Boer TGJ, Armandari I, et al. The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genet. 2021;17:e1009868.

PubMedPubMed CentralGoogle Scholar

Larson JD, Kasper LH, Paugh BS, Jin H, Wu G, Kwon C-H, et al. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell. 2019;35:140–55.e7.

CASPubMedGoogle Scholar

Jain SU, Khazaei S, Marchione DM, Lundgren SM, Wang X, Weinberg DN, et al. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc Natl Acad Sci USA. 2020;117:27354–64.

CASPubMedPubMed CentralGoogle Scholar

Huang TY-T, Piunti A, Qi J, Morgan M, Bartom E, Shilatifard A, et al. Effects of H3.3G34V mutation on genomic H3K36 and H3K27 methylation patterns in isogenic pediatric glioma cells. Acta Neuropathol Commun. 2020;8:219.

CASPubMedPubMed CentralGoogle Scholar

Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S, et al. Histone H3.3 mutations drive paediatric glioblastoma through upregulation of MYCN. Cancer Discov. 2013;3:512–9.

CASPubMedPubMed CentralGoogle Scholar

Voon HPJ, Udugama M, Lin W, Hii L, Law RHP, Steer DL, et al. Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. Nat Commun. 2018;9:3142.

PubMedPubMed CentralGoogle Scholar

Chen K-Y, Bush K, Klein RH, Cervantes V, Lewis N, Naqvi A, et al. Reciprocal H3.3 gene editing identifies K27M and G34R mechanisms in pediatric glioma including NOTCH signaling. Commun Biol. 2020;3:1–15.

PubMedPubMed CentralGoogle Scholar

Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, et al. Distinct H3F3A and H3F3B driver variants define chondroblastoma and giant cell tumour of bone. Nat Genet. 2013;45. https://doi.org/10.1038/ng.2814.

Mu H, Jiang Y, Xue L, Hua Y, Lin J, Cai Z. H3.3 K36M mutation as a clinical diagnosis method of suspected chondroblastoma cases. Orthop Surg. 2021;13:616–22.

PubMedPubMed CentralGoogle Scholar

Fang D, Gan H, Lee J-H, Han J, Wang Z, Riester SM, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016;352:1344–8.

CASPubMedPubMed CentralGoogle Scholar

Zhang Y, Shan C-M, Wang J, Bao K, Tong L, Jia S. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation. Sci Rep. 2017;7:43906.

PubMedPubMed CentralGoogle Scholar

Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science. 2016;352:844–9.

CASPubMedPubMed CentralGoogle Scholar

Zhang Y, Fang D. The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas. Cell Death Dis. 2021;12:1–16.

PubMedPubMed CentralGoogle Scholar

Khazaei S, De Jay N, Deshmukh S, Hendrikse LD, Jawhar W, Chen CCL, et al. H3.3 G34W promotes growth and impedes differentiation of osteoblast-like mesenchymal progenitors in giant cell tumor of bone. Cancer Discov. 2020;10:1968–87.

CASPubMedPubMed CentralGoogle Scholar

Sangatsuda Y, Miura F, Araki H, Mizoguchi M, Hata N, Kuga D, et al. Base-resolution methylomes of gliomas bearing histone H3.3 mutations reveal a G34 mutant-specific signature shared with bone tumors. Sci Rep. 2020;10:1–13.

Google Scholar

Shain AH, Pollack JR. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE. 2013;8:e55119.

PubMedPubMed CentralGoogle Scholar

Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, et al. Proteomic and bioinformatic analysis of mSWI/SNF (BAF) complexes reveals extensive roles in human malignancy. Nat Genet. 2013;45:592–601.

CASPubMedPubMed CentralGoogle Scholar

Mittal P, Roberts CWM. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat Rev Clin Oncol. 2020;17:435–48.

CASPubMedPubMed CentralGoogle Scholar

Versteege I, Sévenet N, Lange J, Rousseau-Merck M-F, Ambros P, Handgretinger R, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6.

CASPubMedGoogle Scholar

Sévenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet. 1999;65:1342–8.

PubMedPubMed CentralGoogle Scholar

Betz BL, Strobeck MW, Reisman DN, Knudsen ES, Weissman BE. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1arrest associated with induction of p16ink4a and activation of RB. Oncogene. 2002;21:5193–203.

CASPubMedGoogle Scholar

Roberts CWM, Leroux MM, Fleming MD, Orkin SH. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell. 2002;2:415–25.

CASPubMedGoogle Scholar

Wang X, Lee RS, Alver BH, Haswell JR, Wang S, Mieczkowski J, et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet. 2017;49:289–95.

CASPubMedGoogle Scholar

Kuwahara Y, Wei D, Durand J, Weissman BE. SNF5 reexpression in malignant rhabdoid tumors regulates transcription of target genes by recruitment of SWI/SNF complexes and RNAPII to the transcription start site of their promoters. Mol Cancer Res. 2013;11:251–60.

CASPubMedPubMed CentralGoogle Scholar

Shi H, Tao T, Abraham BJ, Durbin AD, Zimmerman MW, Kadoch C, et al. ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. Sci Adv. 2020;6:eaaz3440.

CASPubMedPubMed CentralGoogle Scholar

Lee SH, Kim J-S, Zheng S, Huse JT, Bae JS, Lee JW, et al. ARID1B alterations identify aggressive tumors in neuroblastoma. Oncotarget. 2017;8:45943–50.

PubMedPubMed CentralGoogle Scholar

Mathur R, Roberts CWM. SWI/SNF (BAF) complexes: guardians of the epigenome. Annu Rev Cancer Biol. 2018;2:413–27.

Google Scholar

Kennison JA, Tamkun JW. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci USA. 1988;85:8136–40.

CASPubMedPubMed CentralGoogle Scholar

Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992;68:561–72.

CASPubMedGoogle Scholar

Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME, Cho Y-J, et al. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010;18:316–28.

CASPubMedPubMed CentralGoogle Scholar

Marchesi I, Fiorentino FP, Rizzolio F, Giordano A, Bagella L. The ablation of EZH2 uncovers its crucial role in rhabdomyosarcoma formation. Cell Cycle. 2012;11:3828–36.

CASPubMedPubMed CentralGoogle Scholar

Ciarapica R, Carcarino E, Adesso L, De Salvo M, Bracaglia G, Leoncini PP, et al. Pharmacological inhibition of EZH2 as a promising differentiation therapy in embryonal RMS. BMC Cancer. 2014;14:139.

PubMedPubMed CentralGoogle Scholar

Bownes LV, Williams AP, Marayati R, Stafman LL, Markert H, Quinn CH, et al. EZH2 inhibition decreases neuroblastoma proliferation and in vivo tumor growth. PLoS ONE. 2021;16:e0246244.

CASPubMedPubMed CentralGoogle Scholar

Richter GHS, Plehm S, Fasan A, Rössler S, Unland R, Bennani-Baiti IM, et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci USA. 2009;106:5324–9.

CASPubMedPubMed CentralGoogle Scholar

Huang J, Gou H, Yao J, Yi K, Jin Z, Matsuoka M, et al. The noncanonical role of EZH2 in cancer. Cancer Sci. 2021;112:1376–82.

CASPubMedPubMed CentralGoogle Scholar

Koyen AE, Madden MZ, Park D, Minten EV, Kapoor-Vazirani P, Werner E, et al. EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair. Oncogene. 2020;39:4798–813.

CASPubMedPubMed CentralGoogle Scholar

Kim J, Lee Y, Lu X, Song B, Fong K-W, Cao Q, et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 2018;25:2808–20.e4.

CASPubMedPubMed CentralGoogle Scholar

Lee ST, Li Z, Wu Z, Aau M, Guan P, Karuturi RKM, et al. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol Cell. 2011;43:798–810.

CASPubMedGoogle Scholar

Mahara S, Lee PL, Feng M, Tergaonkar V, Chng WJ, Yu Q. HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer. Proc Natl Acad Sci USA. 2016;113:E3735–44.

CASPubMedPubMed CentralGoogle Scholar

Wang L, Chen C, Song Z, Wang H, Ye M, Wang D, et al. EZH2 depletion potentiates MYC degradation inhibiting neuroblastoma and small cell carcinoma tumor formation. Nat Commun. 2022;13:12.

PubMedPubMed CentralGoogle Scholar

Ishi Y, Zhang Y, Zhang A, Sasaki T, Piunti A, Suri A, et al. Therapeutic targeting of EZH2 and BET BRD4 in pediatric rhabdoid tumors. Mol Cancer Ther. 2022;21:715–26.

CASPubMedPubMed CentralGoogle Scholar

Alimova I, Birks DK, Harris PS, Knipstein JA, Venkataraman S, Marquez VE, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol. 2013;15:149–60.

CASPubMedGoogle Scholar

Jin X, Kim LJY, Wu Q, Wallace LC, Prager BC, Sanvoranart T, et al. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat Med. 2017;23:1352–61.

CASPubMedPubMed CentralGoogle Scholar

Al-Ghabkari A, Narendran A. Targeting EZH2-mediated methylation of histone 3 inhibits proliferation of pediatric acute monocytic leukemia cells in vitro. Cancer Biol Ther. 2021;22:333–44.

CASPubMedPubMed CentralGoogle Scholar

Li C, Wang Y, Gong Y, Zhang T, Huang J, Tan Z, et al. Finding an easy way to harmonize: a review of advances in clinical research and combination strategies of EZH2 inhibitors. Clin Epigenetics. 2021;13:62.

CASPubMedPubMed CentralGoogle Scholar

Alharbi M, Mobark N, Bashawri Y, Abu Safieh L, Alowayn A, Aljelaify R, et al. Methylation profiling of medulloblastoma in a clinical setting permits sub-classification and reveals new outcome predictions. Front Neurol. 2020;11:167.

PubMedPubMed CentralGoogle Scholar

Korshunov A, Sahm F, Zheludkova O, Golanov A, Stichel D, Schrimpf D, et al. DNA methylation profiling is a method of choice for molecular verification of pediatric WNT-activated medulloblastomas. Neuro Oncol. 2019;21:214–21.

CASPubMedGoogle Scholar

Schwalbe EC, Williamson D, Lindsey JC, Hamilton D, Ryan SL, Megahed H, et al. DNA methylation profiling of medulloblastoma allows robust sub-classification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol. 2013;125:359–71.

CASPubMedPubMed CentralGoogle Scholar

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–74.

CASPubMedPubMed CentralGoogle Scholar

Capper D, Stichel D, Sahm F, Jones DTW, Schrimpf D, Sill M, et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol. 2018;136:181–210.

CASPubMedPubMed CentralGoogle Scholar

Pickles JC, Fairchild AR, Stone TJ, Brownlee L, Merve A, Yasin SA, et al. DNA methylation-based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. Lancet Child Adolesc Health. 2020;4:121–30.

CASPubMedGoogle Scholar

Tang F, Lu Z, Lei H, Lai Y, Lu Z, Li Z, et al. DNA methylation data-based classification and identification of prognostic signature of children with Wilms tumor. Front Cell Dev Biol. 2021;9. https://www.frontiersin.org/articles/10.3389/fcell.2021.683242.

Zhang X, Zheng Y, Li G, Yu C, Ji T, Miao S. Identifying four DNA methylation gene sites signature for predicting prognosis of osteosarcoma. Transl Cancer Res. 2020;9. https://tcr.amegroups.com/article/view/46392.

Lietz CE, Newman ET, Kelly AD, Xiang DH, Zhang Z, Luscko CA, et al. Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma. Commun Biol. 2022;5:1–20.

Google Scholar

Diede SJ, Guenthoer J, Geng LN, Mahoney SE, Marotta M, Olson JM, et al. DNA methylation of developmental genes in pediatric medulloblastomas identified by denaturation analysis of methylation differences. Proc Natl Acad Sci USA. 2010;107:234–9.

CASPubMedGoogle Scholar

Parker AC, Quinteros BI, Piccolo SR. The DNA methylation landscape of five pediatric-tumor types. PeerJ. 2022;10:e13516.

PubMedPubMed CentralGoogle Scholar

Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet. 2010;11:559–71.

CASPubMedGoogle Scholar

Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108:2419–25.

CASPubMedPubMed CentralGoogle Scholar

Leichter AL, Sullivan MJ, Eccles MR, Chatterjee A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol Cancer. 2017;16:15.

PubMedPubMed CentralGoogle Scholar

Thor T, Künkele A, Pajtler KW, Wefers AK, Stephan H, Mestdagh P, et al. MiR-34a deficiency accelerates medulloblastoma formation in vivo. Int J Cancer. 2015;136:2293–303.

CASPubMedGoogle Scholar

Luo X, Liu J, Cheng SY. The role of microRNAs during the genesis of medulloblastomas induced by the Hedgehog pathway. J Biomed Res. 2011;25:42–8.

CASPubMedPubMed CentralGoogle Scholar

Uziel T, Karginov FV, Xie S, Parker JS, Wang Y-D, Gajjar A, et al. The miR-17∼92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA. 2009;106:2812–7.

CASPubMedPubMed CentralGoogle Scholar

Rashed WM, Adel F, Rezk MA, Basiouny L, Rezk AA, Abdel-Razek AH. MicroRNA childhood cancer catalog (M3Cs): a resource for translational bioinformatics toward health informatics in pediatric cancer. Database. 2022;2022:baac013.

CASPubMedPubMed CentralGoogle Scholar

Galardi A, Colletti M, Di Paolo V, Vitullo P, Antonetti L, Russo I, et al. Exosomal MiRNAs in pediatric cancers. Int J Mol Sci. 2019;20:4600.

CASPubMedPubMed CentralGoogle Scholar

Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

CASPubMedPubMed CentralGoogle Scholar

Chowdhary A, Satagopam V, Schneider R. Long non-coding RNAs: mechanisms, experimental, and computational approaches in identification, characterization, and their biomarker potential in cancer. Front Genet. 2021;12. https://doi.org/10.3389/fgene.2021.649619.

Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U, et al. Long non-coding RNAs: mechanism of action and functional utility. Non Coding RNA Res. 2016;1:43–50.

Google Scholar

Hubé F, Francastel C. Coding and non-coding RNAs, the frontier has never been so blurred. Front Genet. 2018;9. https://doi.org/10.3389/fgene.2018.00140.

Li J, Liu C. Coding or noncoding, the converging concepts of RNAs. Front Genet. 2019;10. https://doi.org/10.3389/fgene.2019.00496.

Lee CQE, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri CK, et al. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nat Commun. 2021;12:2130.

CASPubMedPubMed CentralGoogle Scholar

Chhabra R, Neyol P, Bazala S, Singh I, Murmu M, Sharma U, et al. Chapter 14—Potential clinical application of lncRNAs in pediatric cancer. In: Gupta SC, Challagundla KB, editors. Clinical applications of non-coding RNAs in cancer. Academic Press; 2022. pp. 433–48. https://www.sciencedirect.com/science/article/pii/B9780128245507000102.

Nie L, Li C, Zhao T, Wang Y, Liu J. LncRNA double homeobox A pseudogene 8 (DUXAP8) facilitates the progression of neuroblastoma and activates Wnt/β-catenin pathway via microRNA-29/nucleolar protein 4 like (NOL4L) axis. Brain Res. 2020;1746:146947.

CASPubMedGoogle Scholar

Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, et al. The emerging landscape of circular RNA in life processes. RNA Biol. 2017;14:992–9.

PubMedGoogle Scholar

Dragomir M, Calin GA. Circular RNAs in cancer—lessons learned from microRNAs. Front Oncol. 2018;8. https://doi.org/10.3389/fonc.2018.00179.

Shen Q, Liu X, Li W, Zhao X, Li T, Zhou K, et al. Emerging role and mechanism of circRNAs in pediatric malignant solid tumors. Front Genet. 2022;12. https://doi.org/10.3389/fgene.2021.820936.

Yu J, Yang L, Lu H. The emerging role of circular RNAs in common solid malignant tumors in children. Cancer Cell Int. 2021;21:309.

CASPubMedPubMed CentralGoogle Scholar

Kristensen LS, Hansen TB, Venø MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2018;37:555–65.

CASPubMedGoogle Scholar

Lv T, Miao Y-F, Jin K, Han S, Xu T-Q, Qiu Z-L, et al. Dysregulated circular RNAs in medulloblastoma regulate proliferation and growth of tumor cells via host genes. Cancer Med. 2018;7:6147–57.

CASPubMedPubMed CentralGoogle Scholar

Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med. 2019;11:e10835.

CASPubMedPubMed CentralGoogle Scholar

Zhu Y, Ma X, Zhang H, Wu Y, Kang M, Fang Y, et al. Mechanism of circADD2 as ceRNA in childhood acute lymphoblastic leukemia. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.639910.

Quagliano A, Gopalakrishnapillai A, Barwe SP. Understanding the mechanisms by which epigenetic modifiers avert therapy resistance in cancer. Front Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.00992.

Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad SS, Roy S, et al. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep. 2022;42:BSR20211812.

CASPubMedPubMed CentralGoogle Scholar

Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting epigenetic modifiers of tumor plasticity and cancer stem cell behavior. Cells. 2022;11:1403.

CASPubMedPubMed CentralGoogle Scholar

Lin Y-T, Wu K-J. Epigenetic regulation of epithelial-mesenchymal transition: focusing on hypoxia and TGF-β signaling. J Biomed Sci. 2020;27:39.

CASPubMedPubMed CentralGoogle Scholar

Kuo Y-T, Liu Y-L, Adebayo BO, Shih P-H, Lee W-H, Wang L-S, et al. JARID1B expression plays a critical role in chemoresistance and stem cell-like phenotype of neuroblastoma cells. PLoS ONE. 2015;10:e0125343.

PubMedPubMed CentralGoogle Scholar

Keshelava N, Davicioni E, Wan Z, Ji L, Sposto R, Triche TJ, et al. Histone deacetylase 1 gene expression and sensitization of multidrug-resistant neuroblastoma cell lines to cytotoxic agents by depsipeptide. J Natl Cancer Inst. 2007;99:1107–19.

CASPubMedGoogle Scholar

Huang J-M, Sheard MA, Ji L, Sposto R, Keshelava N. Combination of vorinostat and flavopiridol is selectively cytotoxic to multidrug-resistant neuroblastoma cell lines with mutant TP53. Mol Cancer Ther. 2010;9:3289–301.

CASPubMedPubMed CentralGoogle Scholar

Phimmachanh M, Han JZR, O’Donnell YEI, Latham SL, Croucher DR. Histone deacetylases and histone deacetylase inhibitors in neuroblastoma. Front Cell Dev Biol. 2020;8:578770.

PubMedPubMed CentralGoogle Scholar

Oshima K, Khiabanian H, da Silva-Almeida AC, Tzoneva G, Abate F, Ambesi-Impiombato A, et al. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2016;113:11306–11.

CASPubMedPubMed CentralGoogle Scholar

Jędraszek K, Malczewska M, Parysek-Wójcik K, Lejman M. Resistance mechanisms in pediatric B-cell acute lymphoblastic leukemia. Int J Mol Sci. 2022;23:3067.

PubMedPubMed CentralGoogle Scholar

Richter-Pechańska P, Kunz JB, Rausch T, Erarslan-Uysal B, Bornhauser B, Frismantas V, et al. Pediatric T-ALL type-1 and type-2 relapses develop along distinct pathways of clonal evolution. Leukemia. 2022;36:1759–68.

PubMedPubMed CentralGoogle Scholar

Toscan CE, Jing D, Mayoh C, Lock RB. Reversal of glucocorticoid resistance in paediatric acute lymphoblastic leukaemia is dependent on restoring BIM expression. Br J Cancer. 2020;122:1769–81.

CASPubMedPubMed CentralGoogle Scholar

Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A, et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood. 2010;116:3013–22.

CASPubMedGoogle Scholar

Jing D, Huang Y, Liu X, Sia KCS, Zhang JC, Tai X, et al. Lymphocyte-specific chromatin accessibility pre-determines glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Cell. 2018;34:906–21.e8.

CASPubMedGoogle Scholar

Pierro J, Saliba J, Narang S, Sethia G, Saint Fleur-Lominy S, Chowdhury A, et al. The NSD2 p.E1099K mutation is enriched at relapse and confers drug resistance in a cell context–dependent manner in pediatric acute lymphoblastic leukemia. Mol Cancer Res. 2020;18:1153–65.

CASPubMedPubMed CentralGoogle Scholar

Li J, Lhoumaud P, Riva A, Piper C, Dupere-Richer D, Casellas Roman H, et al. Dysregulation of epigenetic landscape uncovered the mechanisms underlying the relapse of pediatric acute lymphoblastic leukemia with NSD2 mutation. Blood. 2021;138:3297.

Google Scholar

Li J, Hlavka-Zhang J, Shrimp JH, Piper C, Dupéré-Richér D, Roth JS, et al. PRC2 inhibitors overcome glucocorticoid resistance driven by NSD2 mutation in pediatric acute lymphoblastic leukemia. Cancer Discov. 2022;12:186–203.

CASPubMedGoogle Scholar

Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 2022;7:1–20.

PubMedPubMed CentralGoogle Scholar

Rahgozar S, Moafi A, Abedi M, Entezar-e-ghaem M, Moshtaghian J, Ghaedi K, et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther. 2014;15:35–41.

CASPubMedGoogle Scholar

Pouyanrad S, Rahgozar S, Ghodousi ES. Dysregulation of miR-335-3p, targeted by NEAT1 and MALAT1 long non-coding RNAs, is associated with poor prognosis in childhood acute lymphoblastic leukemia. Gene. 2019;692:35–43.

CASPubMedGoogle Scholar

Papatsirou M, Artemaki PI, Scorilas A, Kontos CK. The role of circular RNAs in therapy resistance of patients with solid tumors. Pers Med. 2020;17:469–90.

CASGoogle Scholar

Shen B, Wang Z, Li Z, Song H, Ding X. Circular RNAs: an emerging landscape in tumor metastasis. Am J Cancer Res. 2019;9:630–43.

CASPubMedPubMed CentralGoogle Scholar

Kun-Peng Z, Xiao-Long M, Chun-Lin Z. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 2018;14:321–30.

PubMedPubMed CentralGoogle Scholar

Zhang H, Yan J, Lang X, Zhuang Y. Expression of circ_001569 is upregulated in osteosarcoma and promotes cell proliferation and cisplatin resistance by activating the Wnt/β-catenin signaling pathway. Oncol Lett. 2018;16:5856–62.

CASPubMedPubMed CentralGoogle Scholar

Kun-Peng Z, Xiao-Long M, Lei Z, Chun-Lin Z, Jian-Ping H, Cai-Tao, et al. Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics. 2018;10:1327–46.

PubMedGoogle Scholar

Simeone N, Frezza AM, Zaffaroni N, Stacchiotti S. Tazemetostat for advanced epithelioid sarcoma: current status and future perspectives. Future Oncol. 2021;17:1253–63.

CASPubMedGoogle Scholar

Julia E, Salles G. EZH2 inhibition by tazemetostat: mechanisms of action, safety and efficacy in relapsed/refractory follicular lymphoma. Future Oncol. 2021;17:2127–40.

CASPubMedPubMed CentralGoogle Scholar

Drosos Y, Myers JA, Xu B, Mathias KM, Beane EC, Radko-Juettner S, et al. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol Cell. 2022;82:2472–89.e8.

CASPubMedPubMed CentralGoogle Scholar

Park PJ. ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–80.

CASPubMedPubMed CentralGoogle Scholar

Buenrostro J, Wu B, Chang H, Greenleaf W. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21.29.1–21.29.9.

PubMedGoogle Scholar

Rauluseviciute I, Drabløs F, Rye MB. DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin Epigenetics. 2019;11:193.

CASPubMedPubMed CentralGoogle Scholar

Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10:1930.

PubMedPubMed CentralGoogle Scholar

Casado-Pelaez M, Bueno-Costa A, Esteller M. Single cell cancer epigenetics. Trends Cancer. 2022;8:820–38.

CASPubMedGoogle Scholar

Mumme HL, Bhasin SS, Nawaz M, Thomas BE, Huang C, DeRyckere D, et al. A single cell atlas and interactive web-resource of pediatric cancers and healthy bone marrow. Blood. 2022;140:2278–9.

Google Scholar

Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26:304–19.

CASPubMedPubMed CentralGoogle Scholar

Guo F, Li L, Li J, Wu X, Hu B, Zhu P, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 2017;27:967–88.

CASPubMedPubMed CentralGoogle Scholar

Yu L, Wang X, Mu Q, Tam SST, Loi DSC, Chan AKY, et al. scONE-seq: a single-cell multi-omics method enables simultaneous dissection of phenotype and genotype heterogeneity from frozen tumors. Sci Adv. 2023;9:eabp8901.

CASPubMedPubMed CentralGoogle Scholar

Chen C, Yu W, Alikarami F, Qiu Q, Chen C, Flournoy J, et al. Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell–like blasts in KMT2A-rearranged leukemia. Blood. 2022;139:2198–211.

CASPubMedPubMed CentralGoogle Scholar

Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. 2021;22:627–44.

CASPubMedPubMed CentralGoogle Scholar

Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell. 2022;185:4448–64.e17.

CASPubMedPubMed CentralGoogle Scholar

Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130:815–27.

CASPubMedPubMed CentralGoogle Scholar

Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425–37.

CASPubMedGoogle Scholar

Sweha SR, Chung C, Natarajan SK, Panwalkar P, Pun M, Ghali A, et al. Epigenetically defined therapeutic targeting in H3G34R/V high-grade gliomas. Sci Transl Med. 2021;13:eabf7860.

CASPubMedPubMed CentralGoogle Scholar

Haase S, Nuñez FM, Gauss JC, Thompson S, Brumley E, Lowenstein P, et al. Hemispherical pediatric high-grade glioma: molecular basis and therapeutic opportunities. Int J Mol Sci. 2020;21:9654.

CASPubMedPubMed CentralGoogle Scholar

Presneau N, Baumhoer D, Behjati S, Pillay N, Tarpey P, Campbell PJ, et al. Diagnostic value of H3F3A mutations in giant cell tumour of bone compared to osteoclast-rich mimics. J Pathol Clin Res. 2015;1:113–23.

CASPubMedPubMed CentralGoogle Scholar

Yamamoto H, Ishihara S, Toda Y, Oda Y. Histone H3.3 mutation in giant cell tumor of bone: an update in pathology. Med Mol Morphol. 2020;53:1–6.

CASPubMedGoogle Scholar

Kervarrec T, Collin C, Larousserie F, Bouvier C, Aubert S, Gomez-Brouchet A, et al. H3F3 mutation status of giant cell tumors of the bone, chondroblastomas and their mimics: a combined high resolution melting and pyrosequencing approach. Mod Pathol. 2017;30:393–406.

CASPubMedGoogle Scholar

Yamamoto H, Iwasaki T, Yamada Y, Matsumoto Y, Otsuka H, Yoshimoto M, et al. Diagnostic utility of histone H3.3 G34W, G34R, and G34V mutant-specific antibodies for giant cell tumors of bone. Hum Pathol. 2018;73:41–50.

CASPubMedGoogle Scholar

Lu C, Ramirez D, Hwang S, Jungbluth A, Frosina D, Ntiamoah P, et al. Histone H3K36M mutation and trimethylation patterns in chondroblastoma. Histopathology. 2019;74:291–9.

PubMedGoogle Scholar

Download references

Acknowledgements

RT is supported by the National Medical Research Council grant MOH-001389-00 and Ministry of Education grant MOE-T2EP30222-0014. JYL is supported by Agency for Science, Technology and Research (A*STAR) scholarship. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore

Jia Yu Leung, Hsin Yao Chiu & Reshma Taneja

Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore

Jia Yu Leung

Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), National University Hospital (NUH), 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore

Jia Yu Leung

Authors

Jia Yu Leung

View author publications

You can also search for this author in PubMedGoogle Scholar

2. Hsin Yao Chiu

View author publications

You can also search for this author in PubMedGoogle Scholar

3. Reshma Taneja

View author publications

You can also search for this author in PubMedGoogle Scholar

Contributions

JYL wrote the review and made the figures. HYC wrote the review and made the figures. RT edited the original and revised versions of the review. The review was approved by all authors.

Corresponding author

Correspondence to Reshma Taneja.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, J.Y., Chiu, H.Y. & Taneja, R. Role of epigenetics in paediatric cancer pathogenesis & drug resistance. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-02961-2

Download citation

Received:28 October 2024

Revised:22 January 2025

Accepted:10 February 2025

Published:07 March 2025

DOI:https://doi.org/10.1038/s41416-025-02961-2

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page