nature.com

Mitochondrial genetics, signalling and stress responses

Abstract

Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation. Genome-editing techniques have been adapted to target mtDNA, further propelling the functional analysis of mitochondrial genes. Mitochondria are finely tuned signalling hubs, a concept that has been expanded by advances in methodologies for studying the function of mitochondrial proteins and protein complexes. Mitochondrial respiratory complexes are of dual genetic origin, requiring close coordination between mitochondrial and nuclear gene-expression systems (transcription and translation) for proper assembly and function, and recent findings highlight the importance of the mitochondria in this bidirectional signalling.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Overview of the main approaches for studying mitochondria.

Fig. 2: Challenges in mitochondrial genetics due to heteroplasmy and NUMTs.

Fig. 3: Overview of mtDNA editing tools.

Fig. 4: The reversal of electron transport at complex II in the mammalian ETC.

Fig. 5: Translation and assembly of OXPHOS components by mtDNA and nuDNA in humans.

Fig. 6: Main mechanisms of the MSR in C. elegans and mammals.

References

Suomalainen, A. & Nunnari, J. Mitochondria at the crossroads of health and disease. Cell 187, 2601–2627 (2024).

ArticleCASPubMedGoogle Scholar

Murphy, M. P. & O’Neill, L. A. J. A break in mitochondrial endosymbiosis as a basis for inflammatory diseases. Nature 626, 271–279 (2024).

ArticleCASPubMedGoogle Scholar

Mottis, A., Herzig, S. & Auwerx, J. Mitocellular communication: shaping health and disease. Science 366, 827–832 (2019).

ArticleCASPubMedGoogle Scholar

Picard, M. & Shirihai, O. S. Mitochondrial signal transduction. Cell Metab. 34, 1620–1653 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Morgenstern, M. et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab. 33, 2464–2483.e18 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2020).

ArticlePubMed CentralGoogle Scholar

Wallace, D. C. Mitochondrial genetic medicine. Nat. Genet. 50, 1642–1649 (2018).

ArticleCASPubMedGoogle Scholar

Mavraki, E. et al. Genetic testing for mitochondrial disease: the United Kingdom best practice guidelines. Eur. J. Hum. Genet. 31, 148–163 (2023).

ArticleCASPubMedGoogle Scholar

Elson, J. L., Majamaa, K., Howell, N. & Chinnery, P. F. Associating mitochondrial DNA variation with complex traits. Am. J. Hum. Genet. 80, 378–382 (2007).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yonova-Doing, E. et al. An atlas of mitochondrial DNA genotype–phenotype associations in the UK Biobank. Nat. Genet. 53, 982–993 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Cannon, S. J. et al. Penetrance and expressivity of mitochondrial variants in a large clinically unselected population. Hum. Mol. Genet. 33, 465–474 (2023).

ArticlePubMed CentralGoogle Scholar

Lake, N. J. et al. Quantifying constraint in the human mitochondrial genome. Nature 635, 390–397 (2024).

ArticleCASPubMedGoogle Scholar

Hong, Y. S. et al. Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality. Nat. Commun. 14, 6113 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

ArticleCASPubMedGoogle Scholar

Gupta, R. et al. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. Nature 620, 839–848 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hägg, S., Jylhävä, J., Wang, Y., Czene, K. & Grassmann, F. Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Hum. Genet. 140, 849–861 (2021).

ArticlePubMedGoogle Scholar

Wei, W. et al. Germline selection shapes human mitochondrial DNA diversity. Science 364, eaau6520 (2019).

ArticleCASPubMedGoogle Scholar

Floros, V. I. et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 20, 144–151 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kyriazis, I. D. et al. The impact of diet upon mitochondrial physiology (Review). Int. J. Mol. Med. 50, 135 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Koller, A. et al. Nuclear and mitochondrial genetic variants associated with mitochondrial DNA copy number. Sci. Rep. 14, 2083 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ashar, F. N. et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2, 1247–1255 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Fazzini, F. et al. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14176 individuals. J. Intern. Med. 290, 190–202 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yang, S. Y. et al. Blood-derived mitochondrial DNA copy number is associated with gene expression across multiple tissues and is predictive for incident neurodegenerative disease. Genome Res. 31, 349–358 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Chong, M. R. et al. Mitochondrial DNA copy number as a marker and mediator of stroke prognosis. Neurology 98, e470–e482 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Nitsch, L., Lareau, C. A. & Ludwig, L. S. Mitochondrial genetics through the lens of single-cell multi-omics. Nat. Genet. 56, 1355–1365 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Walker, M. A. et al. Purifying selection against pathogenic mitochondrial DNA in human T cells. N. Engl. J. Med. 383, 1556–1563 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kotrys, A. V. et al. Single-cell analysis reveals context-dependent, cell-level selection of mtDNA. Nature 629, 458–466 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Rand, D. M. & Mossman, J. A. Mitonuclear conflict and cooperation govern the integration of genotypes, phenotypes and environments. Philos. Trans. R. Soc. B 375, 20190188 (2020).

ArticleCASGoogle Scholar

Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

ArticleCASPubMedGoogle Scholar

Scotece, M. et al. mtDNA variability determines spontaneous joint aging damage in a conplastic mouse model. Aging 14, 5966–5983 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wei, W. et al. Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nat. Commun. 11, 1740 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wei, W. et al. Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature 611, 105–114 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Milot, E. et al. Mother’s curse neutralizes natural selection against a human genetic disease over three centuries. Nat. Ecol. Evol. 1, 1400–1406 (2017).

ArticlePubMedGoogle Scholar

Ludwig-Słomczyńska, A. H. et al. Mitochondrial GWAS and association of nuclear–mitochondrial epistasis with BMI in T1DM patients. BMC Med. Genom. 13, 97 (2020).

ArticleGoogle Scholar

Zaidi, A. A. & Makova, K. D. Investigating mitonuclear interactions in human admixed populations. Nat. Ecol. Evol. 3, 213–222 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Tomar, A. et al. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature 630, 720–727 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Gammage, P. A., Moraes, C. T. & Minczuk, M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet. 34, 101–110 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Nissanka, N. & Moraes, C. T. Mitochondrial DNA heteroplasmy in disease and targeted nuclease‐based therapeutic approaches. EMBO Rep. 21, e49612 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Silva-Pinheiro, P. & Minczuk, M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 23, 199–214 (2022).

ArticleCASPubMedGoogle Scholar

Gammage, P. A. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24, 1691–1695 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24, 1696–1700 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zekonyte, U. et al. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat. Commun. 12, 3210 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kauppila, J. H. K. et al. A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep. 16, 2980–2990 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Silva-Pinheiro, P. et al. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat. Biomed. Eng. 7, 692–703 (2023).

ArticleCASPubMedGoogle Scholar

Silva-Pinheiro, P. et al. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat. Commun. 13, 750 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Cho, S.-I. et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764–1776.e12 (2022).

ArticleCASPubMedGoogle Scholar

Yi, Z. et al. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat. Biotechnol. 42, 498–509 (2024).

ArticleCASPubMedGoogle Scholar

Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lee, S., Lee, H., Baek, G. & Kim, J.-S. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. Nat. Biotechnol. 41, 378–386 (2023).

ArticleCASPubMedGoogle Scholar

Lee, S. et al. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol. 23, 211 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lei, Z. et al. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 606, 804–811 (2022).

ArticleCASPubMedGoogle Scholar

Chen, X. et al. In vivo protein turnover rates in varying oxygen tensions nominate MYBBP1A as a mediator of the hyperoxia response. Sci. Adv. 9, eadj4884 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Williams, E. G. et al. Systems proteomics of liver mitochondria function. Science 352, aad0189 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Benegiamo, G. et al. COX7A2L genetic variants determine cardiorespiratory fitness in mice and human. Nat. Metab. 4, 1336–1351 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Rensvold, J. W. et al. Defining mitochondrial protein functions through deep multiomic profiling. Nature 606, 382–388 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Schulte, U. et al. Mitochondrial complexome reveals quality-control pathways of protein import. Nature 614, 153–159 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Schägger, H. & Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19, 1777–1783 (2000).

ArticlePubMedPubMed CentralGoogle Scholar

Mühleip, A. et al. Structural basis of mitochondrial membrane bending by the I–II–III2–IV2 supercomplex. Nature 615, 934–938 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Zheng, W., Chai, P., Zhu, J. & Zhang, K. High-resolution in situ structures of mammalian respiratory supercomplexes. Nature 631, 232–239 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Milenkovic, D. et al. Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes. Cell Metab. 35, 1799–1813.e7 (2023).

ArticleCASPubMedGoogle Scholar

Morgenstern, M. et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–2852 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

ArticleCASPubMedGoogle Scholar

Katsyuba, E., Romani, M., Hofer, D. & Auwerx, J. NAD+ homeostasis in health and disease. Nat. Metab. 2, 9–31 (2020).

ArticleCASPubMedGoogle Scholar

Cantó, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219 (2010).

ArticlePubMedPubMed CentralGoogle Scholar

Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

ArticlePubMedPubMed CentralGoogle Scholar

Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

ArticleCASPubMedGoogle Scholar

Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753–1757 (2008).

ArticleCASPubMedPubMed CentralGoogle Scholar

Luongo, T. S. et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature 588, 174–179 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kory, N. et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci. Adv. 6, eabe5310 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Girardi, E. et al. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nat. Commun. 11, 6145 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hopp, A.-K. et al. Mitochondrial NAD+ controls nuclear ARTD1-induced ADP-ribosylation. Mol. Cell 81, 340–354.e5 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zhu, J. et al. Mitochondrial NADP(H) generation is essential for proline biosynthesis. Science 372, 968–972 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Tran, D. H. et al. Mitochondrial NADP+ is essential for proline biosynthesis during cell growth. Nat. Metab. 3, 571–585 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Murphy, M. P. & Chouchani, E. T. Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 18, 461–469 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Spinelli, J. B. et al. Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science 374, 1227–1237 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Peace, C. G. & O’Neill, L. A. J. The role of itaconate in host defense and inflammation. J. Clin. Investig. 132, e148548 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337.e11 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bayraktar, E. C. et al. MITO-Tag Mice enable rapid isolation and multimodal profiling of mitochondria from specific cell types in vivo. Proc. Natl Acad. Sci. USA 116, 303–312 (2019).

ArticleCASPubMedGoogle Scholar

Ruiz-Rodado, V., Lita, A. & Larion, M. Advances in measuring cancer cell metabolism with subcellular resolution. Nat. Methods 19, 1048–1063 (2022).

ArticleCASPubMedGoogle Scholar

Sun, P. et al. A genetically encoded fluorescent biosensor for detecting itaconate with subcellular resolution in living macrophages. Nat. Commun. 13, 6562 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zhao, Y. et al. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab. 21, 777–789 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hu, Q. et al. Genetically encoded biosensors for evaluating NAD+/NADH ratio in cytosolic and mitochondrial compartments. Cell Rep. Methods 1, 100116 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Vercellino, I. & Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 23, 141–161 (2022).

ArticleCASPubMedGoogle Scholar

Stoldt, S. et al. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat. Cell Biol. 20, 528–534 (2018).

ArticleCASPubMedGoogle Scholar

Pfanner, N., Warscheid, B. & Wiedemann, N. Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bennett, C. F., Latorre-Muro, P. & Puigserver, P. Mechanisms of mitochondrial respiratory adaptation. Nat. Rev. Mol. Cell Biol. 23, 817–835 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

McShane, E. & Churchman, L. S. Central dogma rates in human mitochondria. Hum. Mol. Genet. 33, R34–R41 (2024).

ArticlePubMedGoogle Scholar

Taggart, J. C. & Li, G.-W. Production of protein-complex components is stoichiometric and lacks general feedback regulation in eukaryotes. Cell Syst. 7, 580–589.e4 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

McShane, E. et al. A kinetic dichotomy between mitochondrial and nuclear gene expression processes. Mol. Cell 84, 1541–1555.e11 (2024).

ArticleCASPubMedGoogle Scholar

Song, J., Herrmann, J. M. & Becker, T. Quality control of the mitochondrial proteome. Nat. Rev. Mol. Cell Biol. 22, 54–70 (2021).

ArticleCASPubMedGoogle Scholar

D’Amico, D., Sorrentino, V. & Auwerx, J. Cytosolic proteostasis networks of the mitochondrial stress response. Trends Biochem. Sci. 42, 712–725 (2017).

ArticlePubMedGoogle Scholar

Tan, B. G. et al. The human mitochondrial genome contains a second light strand promoter. Mol. Cell 82, 3646–3660.e9 (2022).

ArticleCASPubMedGoogle Scholar

Tan, B. G., Gustafsson, C. M. & Falkenberg, M. Mechanisms and regulation of human mitochondrial transcription. Nat. Rev. Mol. Cell Biol. 25, 119–132 (2024).

ArticleCASPubMedGoogle Scholar

Rubalcava-Gracia, D., García-Villegas, R. & Larsson, N.-G. No role for nuclear transcription regulators in mammalian mitochondria? Mol. Cell 83, 832–842 (2023).

ArticleCASPubMedGoogle Scholar

Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C. & Simon, M. D. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15, 221–225 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Itoh, Y. et al. Mechanism of membrane-tethered mitochondrial protein synthesis. Science 371, 846–849 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Homberg, B., Rehling, P. & Cruz-Zaragoza, L. D. The multifaceted mitochondrial OXA insertase. Trends Cell Biol. 33, 765–772 (2023).

ArticleCASPubMedGoogle Scholar

Poerschke, S. et al. Identification of TMEM126A as OXA1L-interacting protein reveals cotranslational quality control in mitochondria. Mol. Cell 84, 345–358.e5 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Dennerlein, S., Wang, C. & Rehling, P. Plasticity of mitochondrial translation. Trends Cell Biol. 27, 712–721 (2017).

ArticleCASPubMedGoogle Scholar

Richter-Dennerlein, R. et al. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167, 471–483.e10 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kohler, A. et al. Early fate decision for mitochondrially encoded proteins by a molecular triage. Mol. Cell 83, 3470–3484.e8 (2023).

ArticleCASPubMedGoogle Scholar

Li, S. H.-J., Nofal, M., Parsons, L. R., Rabinowitz, J. D. & Gitai, Z. Monitoring mammalian mitochondrial translation with MitoRiboSeq. Nat. Protoc. 16, 2802–2825 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Couvillion, M. T., Soto, I. C., Shipkovenska, G. & Churchman, L. S. Synchronized mitochondrial and cytosolic translation programs. Nature 533, 499–503 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Soto, I. et al. Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Genome Biol. 23, 170 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Molenaars, M. et al. A conserved mito-cytosolic translational balance links two longevity pathways. Cell Metab. 31, 549–563.e7 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bogenhagen, D. F. & Haley, J. D. Pulse-chase SILAC-based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes. J. Biol. Chem. 295, 2544–2554 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Krishna, S. et al. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev. Cell 56, 2952–2965.e9 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Szczepanowska, K. et al. A salvage pathway maintains highly functional respiratory complex I. Nat. Commun. 11, 1643 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kramer, N. J. et al. Regulators of mitonuclear balance link mitochondrial metabolism to mtDNA expression. Nat. Cell Biol. 25, 1575–1589 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Anderson, N. S. & Haynes, C. M. Folding the mitochondrial UPR into the integrated stress response. Trends Cell Biol. 30, 428–439 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Quirós, P. M., Mottis, A. & Auwerx, J. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17, 213–226 (2016).

ArticlePubMedGoogle Scholar

Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587–590 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Haynes, C. M., Petrova, K., Benedetti, C., Yang, Y. & Ron, D. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13, 467–480 (2007).

ArticleCASPubMedGoogle Scholar

Benedetti, C., Haynes, C. M., Yang, Y., Harding, H. P. & Ron, D. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229–239 (2006).

ArticleCASPubMedPubMed CentralGoogle Scholar

Matilainen, O., Sleiman, M. S. B., Quiros, P. M., Garcia, S. M. D. A. & Auwerx, J. The chromatin remodeling factor ISW-1 integrates organismal responses against nuclear and mitochondrial stress. Nat. Commun. 8, 1818 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Li, T. Y. et al. The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nat. Aging 1, 165–178 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Merkwirth, C. et al. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell 165, 1209–1223 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Tian, Y. et al. Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt). Cell 165, 1197–1208 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Quirós, P. M. et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216, 2027–2045 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Guo, X. et al. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature 579, 427–432 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Fessler, E. et al. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature 579, 433–437 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Fessler, E., Krumwiede, L. & Jae, L. T. DELE1 tracks perturbed protein import and processing in human mitochondria. Nat. Commun. 13, 1853 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yang, J. et al. DELE1 oligomerization promotes integrated stress response activation. Nat. Struct. Mol. Biol. 30, 1295–1302 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Haakonsen, D. L. et al. Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature 626, 874–880 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Münch, C. & Harper, J. W. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534, 710–713 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Sutandy, F. X. R., Gößner, I., Tascher, G. & Münch, C. A cytosolic surveillance mechanism activates the mitochondrial UPR. Nature 618, 849–854 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Cheng, Y.-W., Liu, J. & Finkel, T. Mitohormesis. Cell Metab. 35, 1872–1886 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Mottis, A. et al. Tetracycline-induced mitohormesis mediates disease tolerance against influenza. J. Clin. Invest. 132, e151540 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Moullan, N. et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 10, 1681–1691 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Romani, M. et al. NAD+ boosting reduces age-associated amyloidosis and restores mitochondrial homeostasis in muscle. Cell Rep. 34, 108660 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Katsyuba, E. et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 563, 354–359 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552, 187–193 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Colaço, H. G. et al. Tetracycline antibiotics induce host-dependent disease tolerance to infection. Immunity 54, 53–67.e7 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Cerisano, G. et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur. Heart J. 35, 184–191 (2014).

ArticleCASPubMedGoogle Scholar

Gariani, K. et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190–1204 (2016).

ArticleCASPubMedGoogle Scholar

Delaunay, S. et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature 607, 593–603 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Jiang, S. et al. Inhibition of mammalian mtDNA transcription acts paradoxically to reverse diet-induced hepatosteatosis and obesity. Nat. Metab. 6, 1024–1035 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yang, Q. et al. LONP-1 and ATFS-1 sustain deleterious heteroplasmy by promoting mtDNA replication in dysfunctional mitochondria. Nat. Cell Biol. 24, 181–193 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lin, Y.-F. et al. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533, 416–419 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 52, 342–352 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011).

ArticleCASPubMedPubMed CentralGoogle Scholar

Shao, L.-W., Niu, R. & Liu, Y. Neuropeptide signals cell non-autonomous mitochondrial unfolded protein response. Cell Res. 26, 1182–1196 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Berendzen, K. M. et al. Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell 166, 1553–1563.e10 (2016).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zhang, Q. et al. The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling. Cell 174, 870–883.e17 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Shen, K. et al. The germline coordinates mitokine signaling. Cell 187, 4605–4620.e17 (2024).

ArticleCASPubMedGoogle Scholar

Chung, H. K. et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J. Cell Biol. 216, 149–165 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Tezze, C. et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab. 25, 1374–1389.e6 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Forsström, S. et al. Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions. Cell Metab. 30, 1040–1054.e7 (2019).

ArticlePubMedGoogle Scholar

Lee, C. et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 21, 443–454 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kang, G. M. et al. Mitohormesis in hypothalamic POMC neurons mediates regular exercise-induced high-turnover metabolism. Cell Metab. 33, 334–349.e6 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Download references

Acknowledgements

We thank all members of J. Auwerx laboratory for helpful discussions. We apologize for the omission of many relevant studies due to space constraints. We are funded by grants from the EPFL, the European Research Council (ERC-AdG-787702), the Swiss National Science Foundation (SNSF 31003A_179435 and Sinergia CRSII5_202302) and a GRL grant of the National Research Foundation of Korea (NRF 2017K1A1A2013124). Y.J.L. was supported by a postdoctoral fellowship from the European Molecular Biology Organization (EMBO, ALTF 1161-2021).

Author information

Authors and Affiliations

Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Yasmine J. Liu, Jonathan Sulc & Johan Auwerx

Authors

Yasmine J. Liu

View author publications

You can also search for this author in PubMedGoogle Scholar

2. Jonathan Sulc

View author publications

You can also search for this author in PubMedGoogle Scholar

3. Johan Auwerx

View author publications

You can also search for this author in PubMedGoogle Scholar

Contributions

Y.J.L. and J.A. conceived the idea for the Review. Y.J.L. and J.S. prepared the manuscript and display items under the supervision of J.A. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Johan Auwerx.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Leif Ludwig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.J., Sulc, J. & Auwerx, J. Mitochondrial genetics, signalling and stress responses. Nat Cell Biol (2025). https://doi.org/10.1038/s41556-025-01625-w

Download citation

Received:28 November 2023

Accepted:22 January 2025

Published:10 March 2025

DOI:https://doi.org/10.1038/s41556-025-01625-w

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page