Abstract
Systems biology aims to achieve holistic insights into the molecular workings of cellular systems through iterative loops of measurement, analysis and perturbation. This framework has had remarkable success in unicellular model organisms, and recent experimental and computational advances — from single-cell and spatial profiling to CRISPR genome editing and machine learning — have raised the exciting possibility of leveraging such strategies to prevent, diagnose and treat human diseases. However, adapting systems-inspired approaches to dissect human disease complexity is challenging, given that discrepancies between the biological features of human tissues and the experimental models typically used to probe function (which we term ‘translational distance’) can confound insight. Here we review how samples, measurements and analyses can be contextualized within overall multiscale human disease processes to mitigate data and representation gaps. We then examine ways to bridge the translational distance between systems-inspired human discovery loops and model system validation loops to empower precision interventions in the era of single-cell genomics.
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Change institution
Buy or subscribe
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Learn more
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Challenges in applying systems biology to the study of human disease.
Fig. 2: Challenges in capturing the spatiotemporal scales of human disease with snapshots.
Fig. 3: Capturing descriptions of spatiotemporal scales of human disease.
Fig. 4: Perturbing scales of human disease in experimental model systems.
Fig. 5: Multiscale systems biology — a framework to study disease mechanisms based on human tissues and experimental models.
References
Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).
CASPubMedPubMed CentralGoogle Scholar
Carlisle, B. G., Zheng, T. & Kimmelman, J. Imatinib and the long tail of targeted drug development. Nat. Rev. Clin. Oncol. 17, 1–3 (2020).
PubMedGoogle Scholar
Theofilopoulos, A. N., Kono, D. H. & Baccala, R. The multiple pathways to autoimmunity. Nat. Immunol. 18, 716–724 (2017).
CASPubMedPubMed CentralGoogle Scholar
Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).
CASPubMedGoogle Scholar
Schaffer, L. V. & Ideker, T. Mapping the multiscale structure of biological systems. Cell Syst. 12, 622–635 (2021).
CASPubMedPubMed CentralGoogle Scholar
Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017). A perspective on the Human Cell Atlas project.
PubMedPubMed CentralGoogle Scholar
Rood, J. E. et al. The Human Cell Atlas from a cell census to a unified foundation model. Nature 637, 1065–1071 (2024).
PubMedGoogle Scholar
Rozenblatt-Rosen, O. et al. The Human Tumor Atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).
CASPubMedPubMed CentralGoogle Scholar
Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022). A perspective on the utility of the Human Cell Atlas as a resource for the study of biomedicine.
CASPubMedGoogle Scholar
Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001). A canonical review of systems biology that defines key terms and concepts.
CASPubMedGoogle Scholar
Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).
CASPubMedGoogle Scholar
Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).
CASPubMedGoogle Scholar
Liu, E. T. Systems biology, integrative biology, predictive biology. Cell 121, 505–506 (2005).
CASPubMedGoogle Scholar
Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).
CASPubMedPubMed CentralGoogle Scholar
Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).
CASPubMedPubMed CentralGoogle Scholar
Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15, 34–48 (2014).
CASPubMedGoogle Scholar
van der Sijde, M. R., Ng, A. & Fu, J. Systems genetics: from GWAS to disease pathways. Biochim. Biophys. Acta 1842, 1903–1909 (2014).
PubMedGoogle Scholar
Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023).
CASPubMedPubMed CentralGoogle Scholar
Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019).
CASPubMedGoogle Scholar
Bjornevik, K., Münz, C., Cohen, J. I. & Ascherio, A. Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat. Rev. Neurol. 19, 160–171 (2023).
CASPubMedGoogle Scholar
Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).
CASPubMedPubMed CentralGoogle Scholar
Lee, J.-K. et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat. Genet. 50, 1399–1411 (2018).
CASPubMedPubMed CentralGoogle Scholar
Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016). A review of quantitative concepts that underlie the study of transcriptomic heterogeneity with single-cell-resolved approaches.
CASPubMedPubMed CentralGoogle Scholar
Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).
CASPubMedPubMed CentralGoogle Scholar
Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).
CASPubMedGoogle Scholar
Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 19–37 (2021).
CASPubMedGoogle Scholar
Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat. Commun. 10, 4706 (2019).
CASPubMedPubMed CentralGoogle Scholar
Giles, J. R. et al. Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. Nat. Immunol. 23, 1600–1613 (2022).
CASPubMedPubMed CentralGoogle Scholar
Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165.e23 (2024).
CASPubMedGoogle Scholar
Field, M. J., Bash, P. A. & Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11, 700–733 (1990).
CASGoogle Scholar
Chen, S., Wang, M. & Xia, Z. Multiscale fluid mechanics and modeling. Proc. IUTAM 10, 100–114 (2014).
Google Scholar
Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).
CASPubMedPubMed CentralGoogle Scholar
Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).
CASPubMedGoogle Scholar
Holland, C. H. et al. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 36 (2020).
CASPubMedPubMed CentralGoogle Scholar
Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).
CASPubMedPubMed CentralGoogle Scholar
McFarland, J. M. et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11, 4296 (2020).
CASPubMedPubMed CentralGoogle Scholar
Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).
CASPubMedGoogle Scholar
Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol. 17, 9–17 (2016).
CASPubMedGoogle Scholar
Domcke, S. & Shendure, J. A reference cell tree will serve science better than a reference cell atlas. Cell 186, 1103–1114 (2023).
CASPubMedGoogle Scholar
Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on dynamic inference from single-cell snapshots. Proc. Natl Acad. Sci. USA 115, E2467–E2476 (2018).
CASPubMedPubMed CentralGoogle Scholar
Fischer, D. S. et al. Inferring population dynamics from single-cell RNA-sequencing time series data. Nat. Biotechnol. 37, 461–468 (2019).
CASPubMedPubMed CentralGoogle Scholar
Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 928–943.e22 (2019).
CASPubMedPubMed CentralGoogle Scholar
Teschendorff, A. E. & Feinberg, A. P. Statistical mechanics meets single-cell biology. Nat. Rev. Genet. 22, 459–476 (2021).
CASPubMedPubMed CentralGoogle Scholar
Raghavan, S. et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 184, 6119–6137.e26 (2021). An application of systems biology across human tissue samples and experimental models to pancreatic cancer.
CASPubMedPubMed CentralGoogle Scholar
Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).
CASPubMedPubMed CentralGoogle Scholar
Akkaya, M., Kwak, K. & Pierce, S. K. B cell memory: building two walls of protection against pathogens. Nat. Rev. Immunol. 20, 229–238 (2020).
CASPubMedGoogle Scholar
Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).
CASPubMedPubMed CentralGoogle Scholar
Weeks, L. D. & Ebert, B. L. Causes and consequences of clonal hematopoiesis. Blood 142, 2235–2246 (2023).
CASPubMedPubMed CentralGoogle Scholar
Flynn, J. L., Gideon, H. P., Mattila, J. T. & Lin, P. L. Immunology studies in non-human primate models of tuberculosis. Immunol. Rev. 264, 60–73 (2015).
CASPubMedPubMed CentralGoogle Scholar
Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).
CASPubMedGoogle Scholar
Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).
CASPubMedGoogle Scholar
Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat. Biotechnol. 40, 1467–1477 (2022).
CASPubMedPubMed CentralGoogle Scholar
Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).
CASPubMedPubMed CentralGoogle Scholar
Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).
CASPubMedGoogle Scholar
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).
CASPubMedGoogle Scholar
Wilk, A. J., Shalek, A. K., Holmes, S. & Blish, C. A. Comparative analysis of cell–cell communication at single-cell resolution. Nat. Biotechnol. 42, 470–483 (2024).
CASPubMedGoogle Scholar
Tkachev, V. et al. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8+ T cells drive gastrointestinal acute graft-versus-host disease. Sci. Transl. Med. 13, eabc0227 (2021).
CASPubMedPubMed CentralGoogle Scholar
Gideon, H. P. et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity 55, 827–846.e10 (2022). A study of tuberculosis in nonhuman primates that addresses the issue of contextualizing genomics snapshots in the temporal progression of the infection.
CASPubMedPubMed CentralGoogle Scholar
Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. Science 369, eaax4063 (2020).
CASPubMedGoogle Scholar
Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).
CASPubMedPubMed CentralGoogle Scholar
Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).
PubMedPubMed CentralGoogle Scholar
Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).
CASPubMedPubMed CentralGoogle Scholar
Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).
CASPubMedGoogle Scholar
Friedman, N., Linial, M., Nachman, I. & Pe’er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).
CASPubMedGoogle Scholar
Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).
CASPubMedGoogle Scholar
Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018). An application of systems biology across human tissue samples and experimental models to cancer and checkpoint blockade.
CASPubMedPubMed CentralGoogle Scholar
Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).
CASPubMedGoogle Scholar
Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).
CASPubMedPubMed CentralGoogle Scholar
Ziegler, C. G. K. et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell 184, 4713–4733.e22 (2021).
CASPubMedPubMed CentralGoogle Scholar
Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184, 6243–6261.e27 (2021). An application of systems biology across human tissue samples and experimental models to COVID-19.
CASPubMedPubMed CentralGoogle Scholar
Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).
CASPubMedPubMed CentralGoogle Scholar
Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).
CASPubMedPubMed CentralGoogle Scholar
Barry, C. E. III et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).
CASPubMedPubMed CentralGoogle Scholar
Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e21 (2019). An application of systems biology across human tissue samples and experimental models to glioblastoma.
CASPubMedPubMed CentralGoogle Scholar
Walzl, G., Ronacher, K., Hanekom, W., Scriba, T. J. & Zumla, A. Immunological biomarkers of tuberculosis. Nat. Rev. Immunol. 11, 343–354 (2011).
CASPubMedGoogle Scholar
Corleis, B. et al. Tobacco smoke exposure recruits inflammatory airspace monocytes that establish permissive lung niches for Mycobacterium tuberculosis. Sci. Transl. Med. 15, eadg3451 (2023).
CASPubMedGoogle Scholar
Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).
CASPubMedPubMed CentralGoogle Scholar
du Bois, H., Heim, T. A. & Lund, A. W. Tumor-draining lymph nodes: at the crossroads of metastasis and immunity. Sci. Immunol. 6, eabg3551 (2021).
PubMedPubMed CentralGoogle Scholar
Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).
CASPubMedGoogle Scholar
Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).
CASPubMedGoogle Scholar
Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).
CASPubMedGoogle Scholar
Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).
CASPubMedPubMed CentralGoogle Scholar
Martin-Gayo, E. et al. A reproducibility-based computational framework identifies an inducible, enhanced antiviral state in dendritic cells from HIV-1 elite controllers. Genome Biol. 19, 10 (2018).
PubMedPubMed CentralGoogle Scholar
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
PubMedPubMed CentralGoogle Scholar
Erhard, F. et al. Time-resolved single-cell RNA-seq using metabolic RNA labelling. Nat. Rev. Methods Primers 2, 77 (2022).
Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).
CASPubMedPubMed CentralGoogle Scholar
Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
CASPubMedPubMed CentralGoogle Scholar
Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).
CASPubMedPubMed CentralGoogle Scholar
Qiu, X. et al. Mapping transcriptomic vector fields of single cells. Cell 185, 690–711.e45 (2022).
CASPubMedPubMed CentralGoogle Scholar
Ranzoni, A. M. et al. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell 28, 472–487.e7 (2021).
CASPubMedPubMed CentralGoogle Scholar
Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).
CASPubMedPubMed CentralGoogle Scholar
Fischer, D. S. et al. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’. Nat. Commun. 12, 4515 (2021).
CASPubMedPubMed CentralGoogle Scholar
Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).
CASPubMedGoogle Scholar
Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-seq data. Nat. Commun. 13, 3224 (2022).
PubMedPubMed CentralGoogle Scholar
Reed, A. D. et al. A single-cell atlas enables mapping of homeostatic cellular shifts in the adult human breast. Nat. Genet. 56, 652–662 (2024).
CASPubMedPubMed CentralGoogle Scholar
Hughes, T. K. et al. Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies. Immunity 53, 878–894.e7 (2020).
CASPubMedPubMed CentralGoogle Scholar
Türei, D. et al. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021).
PubMedPubMed CentralGoogle Scholar
Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).
CASPubMedGoogle Scholar
Katti, A. et al. Generation of precision preclinical cancer models using regulated in vivo base editing. Nat. Biotechnol. 42, 437–447 (2024).
CASPubMedGoogle Scholar
Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).
CASPubMedGoogle Scholar
Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).
CASPubMedPubMed CentralGoogle Scholar
Staller, M. V. et al. Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains. Cell Syst. 13, 334–345.e5 (2022).
CASPubMedPubMed CentralGoogle Scholar
Rubin, A. J., Dao, T. T., Schueppert, A. V., Regev, A. & Shalek, A. K. LAT encodes T cell activation pathway balance. Preprint at bioRxivhttps://doi.org/10.1101/2024.08.26.609683 (2024).
Barber, K. W., Shrock, E. & Elledge, S. J. CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative protein binding assays. Mol. Cell 81, 3650–3658.e5 (2021).
CASPubMedGoogle Scholar
Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022). A review of CRISPR screening and its extension to high-content genomics readouts.
PubMedPubMed CentralGoogle Scholar
Arafeh, R., Shibue, T., Dempster, J. M., Hahn, W. C. & Vazquez, F. The present and future of the Cancer Dependency Map. Nat. Rev. Cancer 25, 59–73 (2024).
PubMedGoogle Scholar
Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).
CASPubMedPubMed CentralGoogle Scholar
Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).
CASPubMedPubMed CentralGoogle Scholar
Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229.e26 (2023).
CASPubMedPubMed CentralGoogle Scholar
Liu, N. et al. Scalable, compressed phenotypic screening using pooled perturbations. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02403-z (2024).
Cui, A. et al. Dictionary of immune responses to cytokines at single-cell resolution. Nature 625, 377–384 (2024).
CASPubMedGoogle Scholar
Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e25 (2021).
CASPubMedGoogle Scholar
Dubrot, J. et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat. Immunol. 23, 1495–1506 (2022).
CASPubMedGoogle Scholar
Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 609, 174–182 (2022).
CASPubMedPubMed CentralGoogle Scholar
Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786.e7 (2022).
CASPubMedPubMed CentralGoogle Scholar
Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 624, 154–163 (2023).
CASPubMedPubMed CentralGoogle Scholar
Dedoni, S. et al. An overall view of the most common experimental models for multiple sclerosis. Neurobiol. Dis. 184, 106230 (2023).
CASPubMedGoogle Scholar
Deeks, S. G., Kar, S., Gubernick, S. I. & Kirkpatrick, P. Raltegravir. Nat. Rev. Drug Discov. 7, 117–118 (2008).
CASGoogle Scholar
Cohen, P., Cross, D. & Jänne, P. A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 20, 551–569 (2021).
CASPubMedPubMed CentralGoogle Scholar
Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018).
CASPubMedPubMed CentralGoogle Scholar
Wang, L. et al. A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat. Med. 27, 1600–1606 (2021).
CASPubMedPubMed CentralGoogle Scholar
Müller, J. et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5, 5712 (2014).
PubMedGoogle Scholar
Huang, A. C. & Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat. Immunol. 23, 660–670 (2022).
CASPubMedPubMed CentralGoogle Scholar
Sun, Y. et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature 615, 158–167 (2023).
CASPubMedPubMed CentralGoogle Scholar
Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).
CASPubMedPubMed CentralGoogle Scholar
Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).
Google Scholar
Kato, G. J. et al. Sickle cell disease. Nat. Rev. Dis. Primers 4, 18011 (2018).
Google Scholar
Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295–302 (2021).
CASPubMedPubMed CentralGoogle Scholar
Ransohoff, R. M. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 15, 1074–1077 (2012).
CASPubMedPubMed CentralGoogle Scholar
Chan, L. N. et al. Signalling input from divergent pathways subverts B cell transformation. Nature 583, 845–851 (2020).
CASPubMedPubMed CentralGoogle Scholar
Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).
CASPubMedPubMed CentralGoogle Scholar
van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281.e24 (2019).
PubMedPubMed CentralGoogle Scholar
Winter, P. S. et al. Mutation and cell state compatibility is required and targetable in Ph+ acute lymphoblastic leukemia minimal residual disease. Preprint at bioRxivhttps://doi.org/10.1101/2024.06.06.597767 (2024).
Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).
CASPubMedPubMed CentralGoogle Scholar
Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793.e6 (2018).
CASPubMedGoogle Scholar
Heimberg, G. et al. A cell atlas foundation model for scalable search of similar human cells. Naturehttps://doi.org/10.1038/s41586-024-08411-y (2024).
Dilly, J. et al. Mechanisms of resistance to oncogenic KRAS inhibition in pancreatic cancer. Cancer Discov. 14, 2135–2161 (2024).
PubMedPubMed CentralGoogle Scholar
Hara, T. et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792.e11 (2021).
CASPubMedPubMed CentralGoogle Scholar
Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).
CASPubMedGoogle Scholar
Krausgruber, T. et al. Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 56, 289–306.e7 (2023).
CASPubMedPubMed CentralGoogle Scholar
Lee, J. S. et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 5, eabd1554 (2020).
CASPubMedPubMed CentralGoogle Scholar
Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).
CASPubMedGoogle Scholar
Levy, E. & Slavov, N. Single cell protein analysis for systems biology. Essays Biochem. 62, 595–605 (2018).
PubMedPubMed CentralGoogle Scholar
Rappez, L. et al. SpaceM reveals metabolic states of single cells. Nat. Methods 18, 799–805 (2021).
CASPubMedPubMed CentralGoogle Scholar
Brunner, A.-D. et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2020).
Google Scholar
Yuki, K., Cheng, N., Nakano, M. & Kuo, C. J. Organoid models of tumor immunology. Trends Immunol. 41, 652–664 (2020).
CASPubMedPubMed CentralGoogle Scholar
Mead, B. E. et al. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat. Biomed. Eng. 6, 476–494 (2022).
CASPubMedPubMed CentralGoogle Scholar
Santos, A. J. M. et al. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 632, 401–410 (2024).
CASPubMedPubMed CentralGoogle Scholar
Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).
CASPubMedPubMed CentralGoogle Scholar
Bock, C. et al. The Organoid Cell Atlas. Nat. Biotechnol. 39, 13–17 (2021).
CASPubMedGoogle Scholar
Wessels, H.-H. et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat. Methods 20, 86–94 (2023).
CASPubMedGoogle Scholar
Walton, R. T., Qin, Y. & Blainey, P. C. CROPseq-multi: a versatile solution for multiplexed perturbation and decoding in pooled CRISPR screens. Preprint at bioRxivhttps://doi.org/10.1101/2024.03.17.585235 (2024).
Schmidt, R. et al. Base-editing mutagenesis maps alleles to tune human T cell functions. Nature 625, 805–812 (2024).
CASPubMedGoogle Scholar
DelRosso, N. et al. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 616, 365–372 (2023).
CASPubMedPubMed CentralGoogle Scholar
Rood, J. E., Hupalowska, A. & Regev, A. Toward a foundation model of causal cell and tissue biology with a Perturbation Cell and Tissue Atlas. Cell 187, 4520–4545 (2024).
CASPubMedGoogle Scholar
Cleary, B., Cong, L., Cheung, A., Lander, E. S. & Regev, A. Efficient generation of transcriptomic profiles by random composite measurements. Cell 171, 1424–1436.e18 (2017).
CASPubMedPubMed CentralGoogle Scholar
Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).
CASPubMedGoogle Scholar
Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).
PubMedPubMed CentralGoogle Scholar
Belyaeva, A., Squires, C. & Uhler, C. DCI: learning causal differences between gene regulatory networks. Bioinformatics 37, 3067–3069 (2021).
CASPubMedPubMed CentralGoogle Scholar
Garrido-Rodriguez, M., Zirngibl, K., Ivanova, O., Lobentanzer, S. & Saez-Rodriguez, J. Integrating knowledge and omics to decipher mechanisms via large-scale models of signaling networks. Mol. Syst. Biol. 18, e11036 (2022).
PubMedPubMed CentralGoogle Scholar
Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).
CASPubMedGoogle Scholar
Velten, B. & Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat. Methods 20, 1462–1474 (2023).
CASPubMedGoogle Scholar
Sasse, A., Chikina, M. & Mostafavi, S. Unlocking gene regulation with sequence-to-function models. Nat. Methods 21, 1374–1377 (2024).
CASPubMedGoogle Scholar
Szałata, A. et al. Transformers in single-cell omics: a review and new perspectives. Nat. Methods 21, 1430–1443 (2024).
PubMedGoogle Scholar
Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).
CASPubMedPubMed CentralGoogle Scholar
Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).
CASPubMedGoogle Scholar
Lukonin, I. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 586, 275–280 (2020).
CASPubMedPubMed CentralGoogle Scholar
Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).
CASPubMedPubMed CentralGoogle Scholar
Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).
CASPubMedPubMed CentralGoogle Scholar
Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).
CASPubMedPubMed CentralGoogle Scholar
Puschhof, J. et al. Intestinal organoid cocultures with microbes. Nat. Protoc. 16, 4633–4649 (2021).
CASPubMedGoogle Scholar
DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).
CASPubMedPubMed CentralGoogle Scholar
Graham, A. L. Naturalizing mouse models for immunology. Nat. Immunol. 22, 111–117 (2021).
CASPubMedGoogle Scholar
Kummerlowe, C. et al. Single-cell profiling of environmental enteropathy reveals signatures of epithelial remodeling and immune activation. Sci. Transl. Med. 14, eabi8633 (2022).
CASPubMedPubMed CentralGoogle Scholar
Diedrich, C. R. et al. SIV and Mycobacterium tuberculosis synergy within the granuloma accelerates the reactivation pattern of latent tuberculosis. PLoS Pathog. 16, e1008413 (2020).
CASPubMedPubMed CentralGoogle Scholar
Walters, E. M., Wells, K. D., Bryda, E. C., Schommer, S. & Prather, R. S. Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab. Anim. 46, 167–172 (2017).
Google Scholar
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).
CASPubMedPubMed CentralGoogle Scholar
Davis, J. M. et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693–702 (2002).
CASPubMedGoogle Scholar
Download references
Acknowledgements
The authors would like to thank the donors who have willingly partnered with them and others to enable the types of studies discussed in this review. The authors recognize that these individuals do so at a very precarious period in their lives with the goal of helping to improve understanding and treatment options for themselves and others. The authors appreciate the incredible privilege and responsibility that they have as part of this partnership, and are committed to do everything in their power to achieve the donors’ goals and to sharing what they have learn with those individuals. The authors also thank C.P. Couturier, W. Kattan, M. Ramseier, A. Rubin, Z. Steier and S. Triana for discussions and input on the manuscript. The authors’ work was supported in part by funding from the Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard. A.K.S. was supported in part by the Bill and Melinda Gates Foundation (INV-027498), the NIH (5DP1DA053731, 5R01AI149670, 75N93019C00071, 1P01AI177687, 5UM1AI164556), Break Through Cancer, Foundation MIT and the Wellcome Leap. P.S.W. acknowledges research support from Microsoft.
Author information
Author notes
These authors contributed equally: Peter S. Winter, Alex K. Shalek.
Authors and Affiliations
Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
David S. Fischer
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
Martin A. Villanueva & Alex K. Shalek
Broad Institute of MIT and Harvard, Cambridge, MA, USA
Peter S. Winter & Alex K. Shalek
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
Alex K. Shalek
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
Alex K. Shalek
Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
Alex K. Shalek
Authors
David S. Fischer
View author publications
You can also search for this author in PubMedGoogle Scholar
2. Martin A. Villanueva
View author publications
You can also search for this author in PubMedGoogle Scholar
3. Peter S. Winter
View author publications
You can also search for this author in PubMedGoogle Scholar
4. Alex K. Shalek
View author publications
You can also search for this author in PubMedGoogle Scholar
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Correspondence to Peter S. Winter or Alex K. Shalek.
Ethics declarations
Competing interests
A.K.S. reports compensation for consulting and/or SAB membership from Honeycomb Biotechnologies, Cellarity, Ochre Bio, Bio-Rad Laboratories, Relation Therapeutics, IntrECate biotherapeutics, Parabalis Medicines, Quotient Therapeutics, Passkey Therapeutics, Danaher and Dahlia Biosciences unrelated to this work. P.S.W. reports compensation for consulting/speaking from Engine Ventures and AbbVie unrelated to this work. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Genetics thanks Aldons J. Lusis, who co-reviewed with Dylan C. Sarver; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
Cellular scale
The spatial scale describing cells that includes, for example, variation in gene expression programmes among cells in response to a stimulus. Processes at the cellular scale can be understood on the basis of measurements of isolated cells.
Complexity
A measure of the completeness of the representation of human biology in an experimental model, specifically considering the presence of scales and features of these scales in the experimental model.
Molecular scale
The spatial scale of molecular circuits that includes, for example, intracellular signalling.
Multiscale dynamics
To develop quantitative models of the overall dynamics of a system, one often needs to account for different time scales, to capture both rapid and slow processes, and distinct spatial scales, to account for local and systemic processes.
Niches
Sets of interacting and colocated cells, typically within a tissue (for example, germinal centres). A niche is an intermediate spatial scale between cells and tissues that is often useful to understand how different cell types come together to create a phenotypic attribute (for example, affinity maturation of antibodies).
Niche scale
The spatial scale of niches that includes, for example, variation in cell–cell communication patterns.
Snapshots
Measurements that yield a characterization of states, for example, gene expression states, of a given sample. Most genomics measurements are destructive, which complicates the study of temporal phenomena through snapshots.
Spatial scales
Distance or length scales along which a system exhibits changes that can be related back to a mechanism that underlies its dynamics. It is a concept that is used to guide the placement of samples in an experiment.
Spatiotemporal scales
Scales that are both localized spatially in the anatomy of the organism and temporally with respect to disease progression.
Systems biology
In contrast to reductionist approaches applied to molecular and cell biology that isolate specific features, systems biology endeavours to holistically model the dynamics of a cellular system.
Temporal scales
Time intervals within which a system exhibits changes that can be related back to a mechanism that underlies its dynamics. It is a concept that is used to define timepoints for measuring a system and to define appropriate analyses.
Tensor
The multidimensional tensor represents a hypothetical set of measurements that covers the full disease process, that is, all analytes sampled across all involved tissues at all timepoints, covering the axes of anatomy, assayed modalities and time.
Tissue scale
The spatial scale of tissues that includes, for example, the interaction between lymph nodes and tumours through the adaptive immune system, or the spreading of tumours through metastasis. Understanding processes at the tissue scale often requires a consideration of phenomena that span tissues and organs.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Fischer, D.S., Villanueva, M.A., Winter, P.S. et al. Adapting systems biology to address the complexity of human disease in the single-cell era. Nat Rev Genet (2025). https://doi.org/10.1038/s41576-025-00821-6
Download citation
Accepted:29 January 2025
Published:10 March 2025
DOI:https://doi.org/10.1038/s41576-025-00821-6
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative