Abstract
Perturbations in the intestinal microbiome are strongly linked to the pathogenesis of inflammatory bowel disease (IBD). Bacteria, fungi and viruses all make up part of a complex multi-kingdom community colonizing the gastrointestinal tract, often referred to as the gut microbiome. They can exert various effects on the host that can contribute to an inflammatory state. Advances in screening, multiomics and experimental approaches have revealed insights into host–microbiota interactions in IBD and have identified numerous mechanisms through which the microbiota and its metabolites can exert a major influence on the gastrointestinal tract. Looking into the future, the microbiome and microbiota-associated processes will be likely to provide unparalleled opportunities for novel diagnostic, therapeutic and diet-inspired solutions for the management of IBD through harnessing rationally designed microbial communities, powerful bacterial and fungal metabolites, individually or in combination, to foster intestinal health. In this Review, we examine the current understanding of the cross-kingdom gut microbiome in IBD, focusing on bacterial and fungal components and metabolites. We examine therapeutic and diagnostic opportunities, the microbial metabolism, immunity, neuroimmunology and microbiome-inspired interventions to link mechanisms of disease and identify novel research and therapeutic opportunities for IBD.
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Change institution
Buy or subscribe
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Learn more
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Microbiota-derived metabolites, immune and genetic mechanisms, and their effects on inflammation, intestinal biology and IBD.
Fig. 2: Neuroimmune regulation of intestinal barrier function, inflammation and pain.
Fig. 3: Therapeutic options and potential future directions for gut microbiome targeting in IBD.
References
Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).
PubMedGoogle Scholar
Baumgart, D. C. & Sandborn, W. J. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 1641–1657 (2007).
CASPubMedGoogle Scholar
Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).
PubMedGoogle Scholar
Shan, Y., Lee, M. & Chang, E. B. The gut microbiome and inflammatory bowel diseases. Annu. Rev. Med. 73, 455–468 (2022).
CASPubMedGoogle Scholar
Gilliland, A., Chan, J. J., De Wolfe, T. J., Yang, H. & Vallance, B. A. Pathobionts in inflammatory bowel disease: origins, underlying mechanisms, and implications for clinical care. Gastroenterology 166, 44–58 (2024).
CASPubMedGoogle Scholar
Lee, M. & Chang, E. B. Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues. Gastroenterology 160, 524–537 (2021).
CASPubMedGoogle Scholar
Zhang, Y. et al. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature 606, 754–760 (2022).
CASPubMedPubMed CentralGoogle Scholar
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
CASPubMedPubMed CentralGoogle Scholar
Manichanh, C. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).
CASPubMedPubMed CentralGoogle Scholar
Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).
CASPubMedGoogle Scholar
Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
CASPubMedPubMed CentralGoogle Scholar
Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).
PubMedGoogle Scholar
Pittayanon, R. et al. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology 158, 930–946.e1 (2020).
PubMedGoogle Scholar
Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).
CASPubMedGoogle Scholar
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
CASPubMedPubMed CentralGoogle Scholar
Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).
CASPubMedPubMed CentralGoogle Scholar
Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383–397 (2022).
PubMedGoogle Scholar
Pascal, V. et al. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).
CASPubMedGoogle Scholar
Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).
PubMedGoogle Scholar
Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2018).
PubMedPubMed CentralGoogle Scholar
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).
CASPubMedPubMed CentralGoogle Scholar
Fujimoto, T. et al. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J. Gastroenterol. Hepatol. 28, 613–619 (2013).
CASPubMedGoogle Scholar
Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852 (2017).
PubMedPubMed CentralGoogle Scholar
Lenoir, M. et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 12, 1–16 (2020).
PubMedGoogle Scholar
Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016).
PubMedGoogle Scholar
Mirsepasi-Lauridsen, H. C., Vallance, B. A., Krogfelt, K. A. & Petersen, A. M. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin. Microbiol. Rev. 32, e00060–18 (2019).
CASPubMedPubMed CentralGoogle Scholar
Palmela, C. et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67, 574–587 (2018).
CASPubMedGoogle Scholar
Barrios-Villa, E. et al. Comparative genomics of a subset of adherent/invasive Escherichia coli strains isolated from individuals without inflammatory bowel disease. Genomics 112, 1813–1820 (2020).
CASPubMedGoogle Scholar
Henke, M. T. et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl Acad. Sci. USA 116, 12672–12677 (2019).
CASPubMedPubMed CentralGoogle Scholar
Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010).
CASPubMedGoogle Scholar
Schaus, S. R. et al. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. mBio 15, e00039-24 (2024).
PubMedPubMed CentralGoogle Scholar
Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683.e17 (2020).
CASPubMedPubMed CentralGoogle Scholar
Chen-Liaw, A. et al. Gut microbiota strain richness is species specific and affects engraftment. Nature 637, 422–429 (2024).
PubMedGoogle Scholar
Muller, E., Algavi, Y. M. & Borenstein, E. The gut microbiome–metabolome dataset collection: a curated resource for integrative meta-analysis. npj Biofilms Microbiomes 8, 79 (2022).
PubMedPubMed CentralGoogle Scholar
Han, S. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415–420 (2021).
CASPubMedPubMed CentralGoogle Scholar
Sorbara, M. T. et al. Functional and genomic variation between human-derived isolates of lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 28, 134–146.e4 (2020).
CASPubMedPubMed CentralGoogle Scholar
Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103 (2017).
PubMedPubMed CentralGoogle Scholar
Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).
PubMedPubMed CentralGoogle Scholar
Human Microbiome Jumpstart Reference Strains Consortium, et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010).
Google Scholar
Auchtung, T. A. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3, e00092–e00118 (2018).
CASPubMedPubMed CentralGoogle Scholar
Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).
CASPubMedGoogle Scholar
Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948–1956 (2015).
PubMedGoogle Scholar
Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250–16 (2016).
CASPubMedPubMed CentralGoogle Scholar
Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J. Crohns Colitis 10, 296–305 (2016).
PubMedGoogle Scholar
Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).
CASPubMedGoogle Scholar
Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).
CASPubMedPubMed CentralGoogle Scholar
Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).
PubMedGoogle Scholar
Limon, J. J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388.e6 (2019).
CASPubMedPubMed CentralGoogle Scholar
Auchtung, T. A. et al. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat. Commun. 13, 3151 (2022).
CASPubMedPubMed CentralGoogle Scholar
Iliev, I. D. et al. Focus on fungi. Cell 187, 5121–5127 (2024).
CASPubMedPubMed CentralGoogle Scholar
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
CASPubMedGoogle Scholar
Fiers, W. D., Leonardi, I. & Iliev, I. D. From birth and throughout life: fungal microbiota in nutrition and metabolic health. Annu. Rev. Nutr. 40, 323–343 (2020).
CASPubMedPubMed CentralGoogle Scholar
Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).
CASPubMedPubMed CentralGoogle Scholar
Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).
CASPubMedPubMed CentralGoogle Scholar
Richardson, J. P. et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect. Immun. 86, e00645–17 (2018).
CASPubMedPubMed CentralGoogle Scholar
Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).
PubMedPubMed CentralGoogle Scholar
Fiers, W. D., Gao, I. H. & Iliev, I. D. Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr. Opin. Microbiol. 50, 79–86 (2019).
CASPubMedPubMed CentralGoogle Scholar
Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).
CASPubMedGoogle Scholar
Standaert-Vitse, A. et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology 130, 1764–1775 (2006).
CASPubMedGoogle Scholar
Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).
CASPubMedPubMed CentralGoogle Scholar
Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031.e14 (2021).
CASPubMedPubMed CentralGoogle Scholar
Martini, G. R. et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell responses in Crohn’s disease. Nat. Med. 29, 2602–2614 (2023).
CASPubMedPubMed CentralGoogle Scholar
Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans . Cell 176, 1340–1355.e15 (2019).
CASPubMedGoogle Scholar
Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).
CASPubMedPubMed CentralGoogle Scholar
Adiliaghdam, F. et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci. Immunol. 7, eabn6660 (2022).
CASPubMedPubMed CentralGoogle Scholar
Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778.e5 (2019).
CASPubMedGoogle Scholar
Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).
CASPubMedPubMed CentralGoogle Scholar
Ungaro, F. et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 10, 149–158 (2019).
CASPubMedGoogle Scholar
Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).
CASPubMedPubMed CentralGoogle Scholar
Tito, R. Y. et al. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut 68, 1180–1189 (2019).
CASPubMedGoogle Scholar
Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527–539 (2020).
CASPubMedPubMed CentralGoogle Scholar
Spindler, M. P. et al. Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain. Cell Host Microbe 30, 1481–1498.e5 (2022).
CASPubMedPubMed CentralGoogle Scholar
Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011).
CASPubMedPubMed CentralGoogle Scholar
Leonardi, I. et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359, 232–236 (2018).
CASPubMedPubMed CentralGoogle Scholar
Chu, H. et al. Gene–microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).
CASPubMedPubMed CentralGoogle Scholar
Cao, Z. et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 43, 715–726 (2015).
CASPubMedPubMed CentralGoogle Scholar
Tam, J. M. et al. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J. Infect. Dis. 210, 1844–1854 (2014).
CASPubMedPubMed CentralGoogle Scholar
Grootjans, J. et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science 363, 993–998 (2019).
CASPubMedPubMed CentralGoogle Scholar
Hui, K. Y. et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci. Transl. Med. 10, eaai7795 (2018).
PubMedPubMed CentralGoogle Scholar
Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).
CASPubMedGoogle Scholar
Pierre, J. F. et al. Peptide YY: a Paneth cell antimicrobial peptide that maintains Candida gut commensalism. Science 381, 502–508 (2023).
CASPubMedPubMed CentralGoogle Scholar
Bel, S. et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science 357, 1047–1052 (2017).
CASPubMedPubMed CentralGoogle Scholar
Matsuzawa-Ishimoto, Y. et al. The γδ IEL effector API5 masks genetic susceptibility to Paneth cell death. Nature 610, 547–554 (2022).
CASPubMedPubMed CentralGoogle Scholar
Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).
CASPubMedPubMed CentralGoogle Scholar
Wang, Y. et al. Long-term culture captures injury–repair cycles of colonic stem cells. Cell 179, 1144–1159.e15 (2019).
CASPubMedPubMed CentralGoogle Scholar
Rana, N. et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell 185, 283–298.e17 (2022).
CASPubMedPubMed CentralGoogle Scholar
Stappenbeck, T. S. & Miyoshi, H. The role of stromal stem cells in tissue regeneration and wound repair. Science 324, 1666–1669 (2009).
CASPubMedGoogle Scholar
Castellanos, J. G. et al. Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis. Immunity 49, 1077–1089.e5 (2018).
CASPubMedPubMed CentralGoogle Scholar
Kim, M. et al. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49, 151–163.e5 (2018).
CASPubMedPubMed CentralGoogle Scholar
Viladomiu, M. et al. Adherent-invasive E. coli metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe 29, 607–619.e8 (2021).
CASPubMedGoogle Scholar
Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).
CASPubMedPubMed CentralGoogle Scholar
Izcue, A. et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28, 559–570 (2008).
CASPubMedPubMed CentralGoogle Scholar
Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).
CASPubMedPubMed CentralGoogle Scholar
Spindler, M. P., Mogno, I., Suri, P., Britton, G. J. & Faith, J. J. Species-specific CD4+ T cells enable prediction of mucosal immune phenotypes from microbiota composition. Proc. Natl Acad. Sci. USA 120, e2215914120 (2023).
CASPubMedPubMed CentralGoogle Scholar
Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 185, 831–846.e14 (2022).
CASPubMedPubMed CentralGoogle Scholar
Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).
CASPubMedPubMed CentralGoogle Scholar
Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).
CASPubMedPubMed CentralGoogle Scholar
Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224.e4 (2019).
CASPubMedPubMed CentralGoogle Scholar
Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).
CASPubMedPubMed CentralGoogle Scholar
Shao, T.-Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417.e6 (2019).
CASPubMedPubMed CentralGoogle Scholar
Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).
CASPubMedGoogle Scholar
Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am. J. Gastroenterol. 111, 1599–1607 (2016).
CASPubMedGoogle Scholar
Hölttä, V. et al. IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm. Bowel Dis. 14, 1175–1184 (2008).
PubMedGoogle Scholar
Uzzan, M. et al. Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat. Med. 28, 766–779 (2022).
CASPubMedPubMed CentralGoogle Scholar
Castro-Dopico, T. et al. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50, 1099–1114.e10 (2019).
CASPubMedPubMed CentralGoogle Scholar
Boland, B. S. et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 5, eabb4432 (2020).
CASPubMedPubMed CentralGoogle Scholar
Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).
CASPubMedGoogle Scholar
Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).
PubMedPubMed CentralGoogle Scholar
Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).
CASPubMedPubMed CentralGoogle Scholar
Lange, O., Proczko-Stepaniak, M. & Mika, A. Short-chain fatty acids — a product of the microbiome and its participation in two-way communication on the microbiome–host mammal line. Curr. Obes. Rep. 12, 108–126 (2023).
PubMedPubMed CentralGoogle Scholar
Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).
CASPubMedGoogle Scholar
Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).
CASPubMedGoogle Scholar
Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).
CASPubMedPubMed CentralGoogle Scholar
Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).
CASPubMedPubMed CentralGoogle Scholar
Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).
CASPubMedPubMed CentralGoogle Scholar
Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).
CASPubMedGoogle Scholar
Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).
CASPubMedPubMed CentralGoogle Scholar
Tye, H. et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. Nat. Commun. 9, 3728 (2018).
PubMedPubMed CentralGoogle Scholar
Sorbara, M. T. et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J. Exp. Med. 216, 84–98 (2019).
CASPubMedPubMed CentralGoogle Scholar
McCrory, C., Lenardon, M. & Traven, A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol. 32, 1106–1118 (2024).
CASPubMedGoogle Scholar
Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247 (2023).
CASPubMedGoogle Scholar
van Best, N. et al. Bile acids drive the newborn’s gut microbiota maturation. Nat. Commun. 11, 3692 (2020).
PubMedPubMed CentralGoogle Scholar
Li, Y., Tang, R., Leung, P. S. C., Gershwin, M. E. & Ma, X. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmun. Rev. 16, 885–896 (2017).
CASPubMedGoogle Scholar
Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).
CASPubMedGoogle Scholar
Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015).
CASPubMedPubMed CentralGoogle Scholar
Thomas, J. P., Modos, D., Rushbrook, S. M., Powell, N. & Korcsmaros, T. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13, 829525 (2022).
CASPubMedPubMed CentralGoogle Scholar
Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).
CASPubMedPubMed CentralGoogle Scholar
Paik, D. et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 603, 907–912 (2022).
CASPubMedPubMed CentralGoogle Scholar
Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).
CASPubMedPubMed CentralGoogle Scholar
Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).
CASPubMedGoogle Scholar
Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659–670.e5 (2020).
CASPubMedPubMed CentralGoogle Scholar
Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).
CASPubMedPubMed CentralGoogle Scholar
Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature 626, 419–426 (2024).
CASPubMedGoogle Scholar
Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).
CASPubMedGoogle Scholar
Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).
CASPubMedPubMed CentralGoogle Scholar
Nougayrède, J.-P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).
PubMedGoogle Scholar
Furuichi, M. et al. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 633, 878–886 (2024).
CASPubMedPubMed CentralGoogle Scholar
Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro–immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).
CASPubMedPubMed CentralGoogle Scholar
Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature 583, 441–446 (2020).
CASPubMedPubMed CentralGoogle Scholar
Furness, J. B., Rivera, L. R., Cho, H.-J., Bravo, D. M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740 (2013).
CASPubMedGoogle Scholar
De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl Acad. Sci. USA 115, 6458–6463 (2018).
CASPubMedPubMed CentralGoogle Scholar
Villanacci, V. et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol. Motil. 20, 1009–1016 (2008).
CASPubMedGoogle Scholar
Margolis, K. G. et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology 141, 588–598 (2011). 598.e1–2.
PubMedGoogle Scholar
Aguilera-Lizarraga, J. et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature 590, 151–156 (2021).
CASPubMedPubMed CentralGoogle Scholar
Kwon, D. H. et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28, 554–563 (2021).
CASPubMedPubMed CentralGoogle Scholar
Zhang, W. et al. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 185, 4170–4189.e20 (2022).
CASPubMedPubMed CentralGoogle Scholar
Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78.e16 (2020).
CASPubMedPubMed CentralGoogle Scholar
Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620.e17 (2023).
CASPubMedPubMed CentralGoogle Scholar
Obata, Y. et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284–289 (2020).
CASPubMedGoogle Scholar
Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate salmonella host defense. Cell 180, 33–49.e22 (2020).
CASPubMedGoogle Scholar
Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut — functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).
CASPubMedPubMed CentralGoogle Scholar
Stasi, C., Bellini, M., Bassotti, G., Blandizzi, C. & Milani, S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech. Coloproctol. 18, 613–621 (2014).
CASPubMedGoogle Scholar
Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).
CASPubMedPubMed CentralGoogle Scholar
Zhai, L. et al. Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis. Cell Host Microbe 31, 33–44.e5 (2023).
CASPubMedGoogle Scholar
Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host–microbiome relationships. Cell 178, 1041–1056 (2019).
CASPubMedPubMed CentralGoogle Scholar
Baunwall, S. M. D. et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine 29–30, 100642 (2020).
PubMedPubMed CentralGoogle Scholar
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile . N. Engl. J. Med. 368, 407–415 (2013).
PubMedGoogle Scholar
Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).
PubMedGoogle Scholar
Paramsothy, S. et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 11, 1180–1199 (2017).
PubMedGoogle Scholar
Colman, R. J. & Rubin, D. T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 8, 1569–1581 (2014).
PubMedGoogle Scholar
Sokol, H. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8, 12 (2020).
CASPubMedPubMed CentralGoogle Scholar
Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118.e4 (2015).
PubMedGoogle Scholar
Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).
PubMedGoogle Scholar
Sood, A. et al. Role of faecal microbiota transplantation for maintenance of remission in patients with ulcerative colitis: a pilot study. J. Crohns Colitis 13, 1311–1317 (2019).
PubMedGoogle Scholar
Kedia, S. et al. Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet alone is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: a randomised controlled trial. Gut 71, 2401–2413 (2022).
CASPubMedGoogle Scholar
Danne, C., Rolhion, N. & Sokol, H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat. Rev. Gastroenterol. Hepatol. 18, 503–513 (2021).
PubMedGoogle Scholar
Leonardi, I. et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe 27, 823–829.e3 (2020).
CASPubMedPubMed CentralGoogle Scholar
Narula, N. et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. Br. Med. J. 374, n1554 (2021).
Google Scholar
Kawano, Y. et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 185, 3501–3519.e20 (2022).
CASPubMedPubMed CentralGoogle Scholar
Wali, J. A. et al. Determining the metabolic effects of dietary fat, sugars and fat-sugar interaction using nutritional geometry in a dietary challenge study with male mice. Nat. Commun. 14, 4409 (2023).
CASPubMedPubMed CentralGoogle Scholar
Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).
CASPubMedPubMed CentralGoogle Scholar
Arifuzzaman, M. et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 611, 578–584 (2022).
CASPubMedPubMed CentralGoogle Scholar
Valcheva, R. et al. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes 10, 334–357 (2019).
CASPubMedGoogle Scholar
Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).
CASPubMedGoogle Scholar
MacLellan, A. et al. The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn’s disease: a review. Nutrients 9, 447 (2017).
PubMedPubMed CentralGoogle Scholar
Penagini, F. et al. Nutrition in pediatric inflammatory bowel disease: from etiology to treatment. a systematic review. Nutrients 8, 334 (2016).
PubMedPubMed CentralGoogle Scholar
Gatti, S. et al. Effects of the exclusive enteral nutrition on the microbiota profile of patients with crohn’s disease: a systematic review. Nutrients 9, 832 (2017).
PubMedPubMed CentralGoogle Scholar
Diederen, K. et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease. Sci. Rep. 10, 18879 (2020).
PubMedPubMed CentralGoogle Scholar
Tursi, A. et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am. J. Gastroenterol. 105, 2218–2227 (2010).
PubMedPubMed CentralGoogle Scholar
Cheng, F.-S., Pan, D., Chang, B., Jiang, M. & Sang, L.-X. Probiotic mixture VSL#3: an overview of basic and clinical studies in chronic diseases. World J. Clin. Cases 8, 1361–1384 (2020).
PubMedPubMed CentralGoogle Scholar
Kruis, W. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623 (2004).
CASPubMedPubMed CentralGoogle Scholar
Benjamin, J. L. et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut 60, 923–929 (2011).
CASPubMedGoogle Scholar
Eskenazi, A. et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat. Commun. 13, 302 (2022).
CASPubMedPubMed CentralGoogle Scholar
Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898.e24 (2022).
CASPubMedGoogle Scholar
US National Library of Medicine. ClinicalTrials.govhttps://Clinicaltrials.Gov/Ct2/Show/NCT05370885 (2024).
Bethlehem, L. et al. Microbiota therapeutics for inflammatory bowel disease: the way forward. Lancet Gastroenterol. Hepatol. 9, 476–486 (2024).
CASPubMedGoogle Scholar
Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021).
CASPubMedGoogle Scholar
Lee, J. W. J. et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe 29, 1294–1304.e4 (2021).
CASPubMedPubMed CentralGoogle Scholar
Ananthakrishnan, A. N. et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21, 603–610.e3 (2017).
CASPubMedPubMed CentralGoogle Scholar
Kolho, K.-L. et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am. J. Gastroenterol. 110, 921–930 (2015).
PubMedGoogle Scholar
Hyams, J. S. et al. Clinical and biological predictors of response to standardised paediatric colitis therapy (PROTECT): a multicentre inception cohort study. Lancet 393, 1708–1720 (2019).
PubMedPubMed CentralGoogle Scholar
Kugathasan, S. et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet 389, 1710–1718 (2017).
PubMedPubMed CentralGoogle Scholar
Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634–643 (2018).
CASPubMedGoogle Scholar
Zuo, T. et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9, 3663 (2018).
PubMedPubMed CentralGoogle Scholar
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).
CASPubMedPubMed CentralGoogle Scholar
Mehta, R. S. et al. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease. Nat. Med. 29, 700–709 (2023).
CASPubMedPubMed CentralGoogle Scholar
Lima, S. F. et al. The gut microbiome regulates the clinical efficacy of sulfasalazine therapy for IBD-associated spondyloarthritis. Cell Rep. Med. 5, 101431 (2024).
CASPubMedPubMed CentralGoogle Scholar
Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).
CASPubMedGoogle Scholar
Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).
CASPubMedPubMed CentralGoogle Scholar
Liao, Y. et al. Fungal symbiont transmitted by free-living mice promotes type 2 immunity. Nature 636, 697–704 (2024).
CASPubMedGoogle Scholar
Chen, Y.-H. et al. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci. Immunol. 8, eadd6910 (2023).
CASPubMedPubMed CentralGoogle Scholar
Rehermann, B., Graham, A. L., Masopust, D. & Hamilton, S. E. Integrating natural commensals and pathogens into preclinical mouse models. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-01108-3 (2024).
Ananthakrishnan, A. N. et al. Challenges in IBD research 2024: environmental triggers. Inflamm. Bowel Dis. 30, S19–S29 (2024).
PubMedGoogle Scholar
Pizarro, T. T. et al. Challenges in IBD research: preclinical human IBD mechanisms. Inflamm. Bowel Dis. 25, S5–S12 (2019).
PubMedGoogle Scholar
Syed, S. et al. Challenges in IBD research 2024: precision medicine. Inflamm. Bowel Dis. 30, S39–S54 (2024).
PubMedGoogle Scholar
Sanmarco, L. M. et al. Identification of environmental factors that promote intestinal inflammation. Nature 611, 801–809 (2022).
CASPubMedPubMed CentralGoogle Scholar
Amre, D. K. et al. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn’s disease in children. Am. J. Gastroenterol. 102, 2016–2025 (2007).
CASPubMedGoogle Scholar
Knight-Sepulveda, K., Kais, S., Santaolalla, R. & Abreu, M. T. Diet and inflammatory bowel disease. Gastroenterol. Hepatol. 11, 511–520 (2015).
Google Scholar
Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).
CASPubMedPubMed CentralGoogle Scholar
Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).
CASPubMedPubMed CentralGoogle Scholar
Savage, H. P. et al. Epithelial hypoxia maintains colonization resistance against Candida albicans. Cell Host Microbe 32, 1103–1113.e6 (2024).
CASPubMedGoogle Scholar
Download references
Acknowledgements
The authors are supported by US National Institutes of Health (R01DK113136, R01DK121977, R01AI178683 and R01CA286920 to I.D.I), (R01AI163007 to I.D.I and C.-J.G). I.D.I. is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Irma T. Hirschl Career Scientist Award, the Research Corporation for Science Advancement Award, the Kenneth Rainin Innovator Award, the Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease (PATH) Award and the Cancer Research Institute Lloyd J. Old STAR Award. C.-J.G. was supported by NIH grants DK135816, AI172027, DK132244 and AT013241, the Kenneth Rainin Foundation, the Halvorsen Family Research Scholar in Metabolic Health, the Friedman Center for Nutrition and Inflammation Pilot Award. We thank W.-Y. Lin, J. Patel and S. Chambers for providing editorial support, feedback and help with the figures. I.D.I is a fellow of the Canadian Institute for Advanced Research (CIFAR), programme Fungal Kingdom: Threats and Opportunities.
Author information
Authors and Affiliations
Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA
Iliyan D. Iliev & Chun-Jun Guo
The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
Iliyan D. Iliev & Chun-Jun Guo
Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
Iliyan D. Iliev & Chun-Jun Guo
Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
Iliyan D. Iliev & Chun-Jun Guo
Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
Ashwin N. Ananthakrishnan
Authors
Iliyan D. Iliev
View author publications
You can also search for this author in PubMedGoogle Scholar
2. Ashwin N. Ananthakrishnan
View author publications
You can also search for this author in PubMedGoogle Scholar
3. Chun-Jun Guo
View author publications
You can also search for this author in PubMedGoogle Scholar
Contributions
The authors contributed to different aspects of the article and revised the final draft jointly. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Correspondence to Iliyan D. Iliev.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Kenya Honda, Herbert Tilg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Iliev, I.D., Ananthakrishnan, A.N. & Guo, CJ. Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-025-01163-0
Download citation
Accepted:07 February 2025
Published:10 March 2025
DOI:https://doi.org/10.1038/s41579-025-01163-0
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative