nature.com

A robustly rooted tree of eukaryotes reveals their excavate ancestry

AbstractThe eukaryote Tree of Life (eToL) depicts the relationships among all eukaryotic organisms; its root represents the Last Eukaryotic Common Ancestor (LECA) from which all extant complex lifeforms are descended1. Locating this root is crucial for reconstructing the features of LECA, both as the endpoint of eukaryogenesis and the start point for the evolution of the myriad complex traits underpinning the diversification of living eukaryotes. However, the position of the root remains contentious due to pervasive phylogenetic artefacts stemming from inadequate evolutionary models, poor taxon sampling and limited phylogenetic signal1. Here we estimate the root of the eToL with unprecedented resolution on the basis of a new, much larger, dataset of mitochondrial proteins that includes all known eukaryotic supergroups. Our analyses of a 100 taxon × 93 protein dataset with state-of-the-art phylogenetic models and an extensive evaluation of alternative hypotheses show that the eukaryotic root lies between two multi-supergroup assemblages: ‘Opimoda+’ and ‘Diphoda+’. This position is consistently supported across different models and robustness analyses. Notably, groups containing ‘typical excavates’ are placed on both sides of the root, suggesting the complex features of the ‘excavate’ cell architecture trace back to LECA. This study sheds light on the ancestral cells from which extant eukaryotes arose and provides a crucial framework for investigating the origin and evolution of canonical eukaryotic features.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Rooted phylogenies of eukaryotes estimated from mitochondrial proteins of alphaproteobacterial origin.Fig. 2: Likelihood estimation of candidate eukaryote roots across complex models.Fig. 3: Evaluating potential for LBA bias on simulated data.Fig. 4: The recovered root suggests the morphological features of ‘typical excavates’ are ancestral traits of LECA.

Data availability

All sequence alignments and phylogenetic trees are available at Figshare (https://figshare.com/s/59b28ecc0056dc8d0d03)34 and the accession codes for publicly available data used in these analyses are given in Supplementary Table 7. The data included in the accession codes can be found in the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov), the MMETSP database on the iMicrobe website https://www.imicrobe.us/#/projects/104 or the PhyloFisher v.1 dataset available at Figshare (https://doi.org/10.6084/m9.figshare.15141900.v1)72 as indicated in Supplementary Table 7.

Code availability

Custom scripts have been deposited at Figshare (https://figshare.com/s/59b28ecc0056dc8d0d03)34.

ReferencesBurki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 https://doi.org/10.1016/j.tree.2019.08.008 (2020).Tikhonenkov, D. V. et al. Microbial predators form a new supergroup of eukaryotes. Nature 612, 714–719 (2022).Article 

ADS 

PubMed 

MATH 

Google Scholar 

Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).Article 

PubMed 

PubMed Central 

Google Scholar 

Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).Article 

ADS 

PubMed 

PubMed Central 

Google Scholar 

Katz, L. A., Grant, J. R., Parfrey, L. W. & Burleigh, J. G. Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst. Biol. 61, 653–660 (2012).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Cerón-Romero, M. A., Fonseca, M. M., De Oliveira Martins, L., Posada, D. & Katz, L. A. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between Opisthokonts and all other lineages. Genome Biol. Evol. 14, evac119 (2022).Article 

PubMed 

PubMed Central 

Google Scholar 

Cavalier-Smith, T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol. Lett. 6, 342–345 (2010).Article 

PubMed 

MATH 

Google Scholar 

Stechmann, A. & Cavalier-Smith, T. Rooting the eukaryote tree by using a derived gene fusion. Science 297, 89–91 (2002).Article 

ADS 

PubMed 

MATH 

Google Scholar 

Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118 (2005).Article 

ADS 

PubMed 

MATH 

Google Scholar 

Rogozin, I. B., Basu, M. K., Csürös, M. & Koonin, E. V. Analysis of rare genomic changes does not support the Unikont–Bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol. Evol. 1, 99–113 (2009).Article 

PubMed 

PubMed Central 

Google Scholar 

Leonard, G. & Richards, T. A. Genome-scale comparative analysis of gene fusions, genefissions, and the fungal tree of life. Proc. Natl Acad. Sci. USA 109, 21402–21407 (2012).Article 

ADS 

PubMed 

PubMed Central 

Google Scholar 

Vosseberg, J. et al. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat. Ecol. Evol. 5, 92–100 (2021).Article 

PubMed 

Google Scholar 

Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).Article 

ADS 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).Article 

ADS 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evolution 6, 253–262 (2022).Article 

MATH 

Google Scholar 

Al Jewari, C. & Baldauf, S. L. An excavate root for the eukaryote Tree of Life. Sci. Adv. 9, eade4973 (2023).Article 

ADS 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Derelle, R. & Lang, B. F. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol. Biol. Evol. 29, 1277–1289 (2012).Article 

PubMed 

MATH 

Google Scholar 

Derelle, R. et al. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl Acad. Sci. USA 112, E693–E699 (2015).Article 

PubMed 

PubMed Central 

Google Scholar 

He, D., Fiz-Palacios, O., Fu, C. J., Tsai, C. C. & Baldauf, S. L. An alternative root for the eukaryote Tree of Life. Curr. Biol. 24, 465–470 (2014).Article 

PubMed 

Google Scholar 

Al Jewari, C. & Baldauf, S. L. Conflict over the eukaryote root resides in strong outliers, mosaics and missing data sensitivity of site-specific (CAT) mixture models. Syst. Biol. 0, 1–16 (2022).MATH 

Google Scholar 

Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410–414 (2018).Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).Article 

PubMed 

MATH 

Google Scholar 

Susko, E., Lincker, L. & Roger, A. J. Accelerated estimation of frequency classes in site-heterogeneous profile mixture models. Mol. Biol. Evol. 35, 1266–1283 (2018).Article 

PubMed 

MATH 

Google Scholar 

Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously evolved sequence alignments. Syst. Biol. 69, 249–264 (2019).

Google Scholar 

Gaston, D., Susko, E. & Roger, A. J. A phylogenetic mixture model for the identification of functionally divergent protein residues. Bioinformatics 27, 2655–2663 (2011).Article 

PubMed 

MATH 

Google Scholar 

Quang, L. S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).Article 

PubMed 

MATH 

Google Scholar 

Szánthó, L. L., Lartillot, N., Szöllősi, G. J. & Schrempf, D. Compositionally constrained sites drive long-branch attraction. Syst. Biol. https://doi.org/10.1093/SYSBIO/SYAD013 (2023).Jerlström-Hultqvist, J. et al. A unique symbiosome in an anaerobic single-celled eukaryote. Nat. Commun. 15, 9726 (2024).Baños, H., Susko, E. & Roger, A. J. Is over-parameterization a problem for profile mixture models? Syst. Biol. https://doi.org/10.1093/SYSBIO/SYAD063 (2023).Brown, M. W. et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol. Evol. 10, 427–433 (2018).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Strassert, J. F. H., Jamy, M., Mylnikov, A. P., Tikhonenkov, D. V. & Burki, F. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote Tree of Life. Mol. Biol. Evol. 36, 757 (2019).Article 

PubMed 

PubMed Central 

Google Scholar 

Williamson, K. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry [Data]. Figshare https://doi.org/10.6084/m9.figshare.26863594.v1 (2025).Cavalier-Smith, T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. Protoplasma 259, 487–593 (2022).Article 

PubMed 

Google Scholar 

Cavalier-Smith, T. & Chao, E. E. Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 257, 621–753 (2020).Article 

PubMed 

PubMed Central 

Google Scholar 

Baker, B. A. et al. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments. Nat. Microbiol. 9, 964–975 (2024).Susko, E. Tests for two trees using likelihood methods. Mol. Biol. Evol. 31, 1029–1039 (2014).Article 

PubMed 

MATH 

Google Scholar 

Markowski, E. & Susko, E. Performance of topology tests under extreme selection bias. Mol. Biol. Evol. 41, msad280 (2024).Article 

PubMed 

MATH 

Google Scholar 

Heiss, A. A. et al. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. R. Soc. Open Sci. 5, 171707 (2018).Article 

ADS 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Susko, E. & Roger, A. J. Long branch attraction biases in phylogenetics. Syst. Biol. 70, 838–843 (2021).Article 

PubMed 

MATH 

Google Scholar 

Kapli, P. & Telford, M. J. Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. Sci. Adv. 6, 5162–5173 (2020).Article 

ADS 

MATH 

Google Scholar 

Inagaki, Y., Susko, E., Fast, N. M. & Roger, A. J. Covarion shifts cause a long-branch attraction artifact that unites Microsporidia and Archaebacteria in EF-1α phylogenies. Mol. Biol. Evol. 21, 1340–1349 (2004).Article 

PubMed 

Google Scholar 

Eglit, Y. et al. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. Curr. Biol. 34, 451–459.e6 (2024).Article 

PubMed 

Google Scholar 

Yubuki, N. & Leander, B. S. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 75, 230–244 (2013).Article 

PubMed 

MATH 

Google Scholar 

Heiss, A. A., Walker, G. & Simpson, A. G. B. The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts. Protist 164, 598–621 (2013).Article 

PubMed 

Google Scholar 

Suzuki-Tellier, S., Kiørboe, T. & Simpson, A. G. B. The function of the feeding groove of ‘typical excavate’ flagellates. J. Eukaryot. Microbiol. 71, e13016 (2024).Article 

PubMed 

Google Scholar 

Takishita, K. et al. Multigene phylogenies of diverse carpediemonas-like organisms identify the closest relatives of ‘amitochondriate’ diplomonads and retortamonads. Protist 163, 344–355 (2012).Article 

PubMed 

Google Scholar 

Leger, M. M. et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 1, 0092 (2017).Article 

PubMed 

PubMed Central 

Google Scholar 

Heiss, A. A., Walker, G. & Simpson, A. G. B. The ultrastructure of ancyromonas, a eukaryote without supergroup affinities. Protist 162, 373–393 (2011).Article 

PubMed 

Google Scholar 

Brugerolle, G. Description of a new freshwater heterotrophic flagellate Sulcomonas lacustris affiliated to the collodictyonids. Acta Protozool. 45, 175–182 (2006).

Google Scholar 

Brugerolle, G., Bricheux, G., Philippe, H. & Coffe, G. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist 153, 59–70 (2002).Article 

PubMed 

Google Scholar 

Tikhonenkov, D. V. et al. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate Phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS ONE 9, e95467 (2014).Article 

ADS 

PubMed 

PubMed Central 

Google Scholar 

Janouškovec, J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724.e5 (2017).Article 

PubMed 

MATH 

Google Scholar 

Leander, B. S. Eukaryotic evolution: deep phylogeny does not imply morphological novelty. Curr. Biol. 33, R112–R114 (2023).Article 

PubMed 

Google Scholar 

Cavalier-Smith, T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur. J. Protistol. 49, 115–178 (2013).Article 

PubMed 

Google Scholar 

Tice, A. K. et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19, e3001365 (2021).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150 (2012).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 

PubMed 

PubMed Central 

Google Scholar 

Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).Article 

PubMed 

PubMed Central 

Google Scholar 

Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 

PubMed 

Google Scholar 

Tukey, J. W. Exploratory Data Analysis (Addison-Wesley Publishing Company, 1977).Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268 (2015).Article 

PubMed 

MATH 

Google Scholar 

Menardo, F. et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinf. 19, 164 (2018).Article 

MATH 

Google Scholar 

Susko, E. & Roger, A. J. On the use of information criteria for model selection in phylogenetics. Mol. Biol. Evol. 37, 549–562 (2020).Article 

PubMed 

MATH 

Google Scholar 

Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).Article 

PubMed 

MATH 

Google Scholar 

Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).Article 

PubMed 

MATH 

Google Scholar 

Reynolds, D. in Encyclopedia of Biometrics (ed. Li, S. Z.) 659–663 (Springer, 2009).Brown, M. Data associated with PhyloFisher. Figshare https://doi.org/10.6084/m9.figshare.15141900.v1 (2021).Download referencesAcknowledgementsWe thank N. Ly-Trong for assistance with model implementation in IQ-TREE and J. Jerlström-Hultqvist for assistance with data acquisition and processing. We also thank J. Ross for assistance with figure design. This work was supported by the Moore-Simons Project on the Origin of the Eukaryotic Cell, Simons Foundation grant no. 735923LPI (https://doi.org/10.46714/735923LPI) awarded to A.J.R., E.S. and L.E. and by NSERC Discovery grants awarded to A.J.R. (grant no. RGPIN-2022-05430), A.G.B.S. (grant no. 298366-2019) and E.S. K.W. was supported by a graduate scholarship from the Killam Foundation.Author informationAuthors and AffiliationsDepartment of Biochemistry and Molecular Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, CanadaKelsey Williamson, Laura Eme, Hector Baños, Charley G. P. McCarthy, Sergio A. Muñoz-Gómez & Andrew J. RogerUnité d’Ecologie, Systématique et Evolution Université Paris-Saclay, Gif-sur-Yvette, FranceLaura EmeDepartment of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USALaura EmeDepartment of Mathematics and Statistics and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, CanadaHector Baños & Edward SuskoDepartment of Mathematics, California State University San Bernardino, San Bernardino, CA, USAHector BañosGraduate School of Agriculture, Kyoto University, Kyoto, JapanRyoma KamikawaSection for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, NorwayRussell J. S. OrrTotal Defence Division, Norwegian Defence Research Establishment FFI, Kjeller, NorwayRussell J. S. OrrDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USASergio A. Muñoz-GómezSchool of Computing, Australian National University, Canberra, Australian Capital Territory, AustraliaBui Quang MinhDepartment of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, CanadaAlastair G. B. SimpsonAuthorsKelsey WilliamsonView author publicationsYou can also search for this author in

PubMed Google ScholarLaura EmeView author publicationsYou can also search for this author in

PubMed Google ScholarHector BañosView author publicationsYou can also search for this author in

PubMed Google ScholarCharley G. P. McCarthyView author publicationsYou can also search for this author in

PubMed Google ScholarEdward SuskoView author publicationsYou can also search for this author in

PubMed Google ScholarRyoma KamikawaView author publicationsYou can also search for this author in

PubMed Google ScholarRussell J. S. OrrView author publicationsYou can also search for this author in

PubMed Google ScholarSergio A. Muñoz-GómezView author publicationsYou can also search for this author in

PubMed Google ScholarBui Quang MinhView author publicationsYou can also search for this author in

PubMed Google ScholarAlastair G. B. SimpsonView author publicationsYou can also search for this author in

PubMed Google ScholarAndrew J. RogerView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsAncestral sequence reconstruction analyses, expansion and curation of the final datasets, and all phylogenomic analyses were performed by K.W. in consultation with A.J.R., A.G.B.S. and L.E. K.W. and H.B. performed simulation analyses. H.B. developed and implemented the MEOW model and performed cross-validation testing. C.G.P.M. and E.S. performed GFmix analyses. E.S. performed topology testing. B.Q.M. implemented the FunDi model in IQ-TREE2. S.A.M.-G., R.K. and R.J.S.O. provided molecular data. K.W., A.J.R., A.G.B.S., H.B., C.G.P.M. and E.S. wrote, and all authors edited and approved, the manuscript. A.J.R. and L.E. initially conceived the study.Corresponding authorsCorrespondence to

Kelsey Williamson or Andrew J. Roger.Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Thomas Richards and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Entropy and posterior probability of the predicted ancestral sequence at the root of Alphaproteobacteria as ingroup taxa are removed.A. The mean, median, and standard deviation of the posterior probability as taxa are removed. B. The mean, median, and standard deviation of the entropy as taxa are removed.Extended Data Fig. 2 Bayesian consensus tree estimated from Anae+ dataset.Consensus phylogeny estimated under the CAT + GTR model in PhyloBayes from 4 chains after 29,000 cycles, with a burn-in of 1000. Posterior probabilities for each bipartition are indicated. Note that these 4 chains included one in which Hemimastigophora branched on the opposite side of the root, separate from its previously inferred close relative Meteora, with this non-convergence resulting in posterior probabilities ~0.75 (0.74) for several deep nodes in the Diphoda+ side of the tree.Extended Data Fig. 3 Phylogeny estimated from Anae+ dataset with CAT-PMSF model.Amino acid exchangeability matrix and site frequency profiles were estimated on the alignment and a guide tree in PhyloBayes. Rate variation was modelled with the Free Rate model with four classes. Support values indicated are from 100 replicates of non-parametric bootstrapping.Extended Data Fig. 4 Bayesian consensus tree estimated from Anae- dataset.Consensus phylogeny estimated under the CAT + GTR model in PhyloBayes from 4 chains after 16,500 cycles, with a burn-in of 1000. Posterior probabilities for each bipartition are indicated.Extended Data Fig. 5 Phylogeny estimated from Anae- dataset with CAT-PMSF model.Amino acid exchangeability matrix and site frequency profiles were estimated on the alignment and a guide tree in PhyloBayes. Rate variation was modelled with the Free Rate model with four classes. Support values indicated are from 100 replicates of non-parametric bootstrapping.Extended Data Fig. 6 Phylogeny estimated from Anae+ dataset with only nuclear-encoded proteins.Phylogeny was estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are displayed on branches as SH-aLRT/UFBOOT2.Extended Data Fig. 7 Phylogeny estimated from Anae- dataset with only nuclear-encoded proteins.Phylogeny was estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are displayed on branches as SH-aLRT/UFBOOT2.Extended Data Fig. 8 Evaluating change in support for the root position as fastest-evolving sites are removed.A. Phylogenies were estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are indicated for the bipartitions relevant to the position of the eukaryote root.Extended Data Fig. 9 Phylogeny estimated from Anae- dataset after removal of fastest evolving taxa.Phylogeny was estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are displayed on branches as SH-aLRT/UFBOOT2.Extended Data Fig. 10 Phylogeny estimated from Anae- dataset after removal of most divergent genes.Alignment after gene removal consisted of 19324 sites from 80 concatenated genes. The phylogeny was estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are displayed on branches as SH-aLRT/UFBOOT2.Supplementary informationSupplementary InformationThis file contains Supplementary Methods and Refs.Reporting SummarySupplementary TablesThis file contains Supplementary Tables 1–11.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleWilliamson, K., Eme, L., Baños, H. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry.

Nature (2025). https://doi.org/10.1038/s41586-025-08709-5Download citationReceived: 09 September 2024Accepted: 28 January 2025Published: 12 March 2025DOI: https://doi.org/10.1038/s41586-025-08709-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page