nature.com

Species turnover does not rescue biodiversity in fragmented landscapes

AbstractHabitat fragmentation generally reduces biodiversity at the patch scale (α diversity)1. However, there is ongoing debate about whether such negative effects can be alleviated at the landscape scale (γ diversity) if among-patch diversity (β diversity) increases as a result of fragmentation2,3,4,5,6. This controversial view has not been rigorously tested. Here we use a dataset of 4,006 taxa across 37 studies from 6 continents to test the effects of fragmentation on biodiversity across scales by explicitly comparing continuous and fragmented landscapes. We find that fragmented landscapes consistently have both lower α diversity and lower γ diversity. Although fragmented landscapes did tend to have higher β diversity, this did not translate into higher γ diversity. Our findings refute claims that habitat fragmentation can increase biodiversity at landscape scales, and emphasize the need to restore habitat and increase connectivity to minimize biodiversity loss at ever-increasing scales.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Habitat amount and distance decay predict different patterns of α, β and γ diversity.Fig. 2: Differences in α, β and γ diversity in continuous and fragmented landscapes.Fig. 3: Differences in α, β and γ diversity in continuous and fragmented landscapes controlling for differences in sampling effort and using all plot pairs.

Data availability

The datasets used in this paper are available at GitHub (https://github.com/thiago-goncalves-souza/ms-biodiversity-loss-fragmented-landscapes) and Zenodo (https://zenodo.org/records/14885581)61.

Code availability

The code used in this paper is available at GitHub (https://github.com/thiago-goncalves-souza/ms-biodiversity-loss-fragmented-landscapes) and Zenodo (https://zenodo.org/records/14885581)61.

ReferencesHaddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).Article 

ADS 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

MATH 

Google Scholar 

Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. 87, 661–685 (2012).Article 

PubMed 

MATH 

Google Scholar 

Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).Article 

MATH 

Google Scholar 

Simberloff, D. & Abele, L. G. Refuge design and island biogeographic theory: effects of fragmentation. Am. Nat. 120, 41–50 (1982).Article 

MATH 

Google Scholar 

Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).Article 

Google Scholar 

Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Article 

PubMed 

Google Scholar 

Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).Article 

PubMed 

PubMed Central 

Google Scholar 

Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).Article 

ADS 

PubMed 

MATH 

Google Scholar 

Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).Article 

PubMed 

MATH 

Google Scholar 

Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).Article 

ADS 

PubMed 

MATH 

Google Scholar 

Watling, J. I. et al. Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol. Lett. 23, 674–681 (2020).Article 

PubMed 

MATH 

Google Scholar 

Wilson, E. O. & Willis, E. O. in Ecology and Evolution of Communities (eds Cody M. L. & Diamond J. M.) 522–534 (Harvard Univ. Press, 1975).Simberloff, D. & Abele, L. G. Island biogeography theory and conservation practice. Science 191, 285–286 (1976).Article 

ADS 

PubMed 

Google Scholar 

Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).Article 

PubMed 

MATH 

Google Scholar 

Didham, R. K., Kapos, V. & Ewers, R. M. Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121, 161–170 (2012).Article 

ADS 

MATH 

Google Scholar 

Lindenmayer, D. B. & Fischer, J. Tackling the habitat fragmentation panchreston. Trends Ecol. Evol. 22, 127–132 (2007).Article 

PubMed 

MATH 

Google Scholar 

Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).Article 

Google Scholar 

Riva, F. & Fahrig, L. Landscape‐scale habitat fragmentation is positively related to biodiversity, despite patch‐scale ecosystem decay. Ecol. Lett. 26, 268–277 (2023).Article 

PubMed 

MATH 

Google Scholar 

Martín-Queller, E., Albert, C. H., Dumas, P. J. & Saatkamp, A. Islands, mainland, and terrestrial fragments: how isolation shapes plant diversity. Ecol. Evol. 7, 6904–6917 (2017).Article 

PubMed 

PubMed Central 

Google Scholar 

de Castro Solar, R. R. et al. How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).Article 

MATH 

Google Scholar 

Pardini, R., de Arruda Bueno, A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5, e13666 (2010).Article 

ADS 

PubMed 

PubMed Central 

Google Scholar 

Torrenta, R. & Villard, M.-A. A test of the habitat amount hypothesis as an explanation for the species richness of forest bird assemblages. J. Biogeogr. 44, 1791–1801 (2017).Article 

MATH 

Google Scholar 

Vieira, M. V., Almeida-Gomes, M., Delciellos, A. C., Cerqueira, R. & Crouzeilles, R. Fair tests of the habitat amount hypothesis require appropriate metrics of patch isolation: an example with small mammals in the Brazilian Atlantic Forest. Biol. Conserv. 226, 264–270 (2018).Article 

Google Scholar 

Fletcher, R. J. Jr., Smith, T. A. H., Kortessis, N., Bruna, E. M. & Holt, R. D. Landscape experiments unlock relationships among habitat loss, fragmentation, and patch-size effects. Ecology 104, e4037 (2023).Article 

PubMed 

Google Scholar 

Horváth, Z., Ptacnik, R., Vad, C. F. & Chase, J. M. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecol. Lett. 22, 1019–1027 (2019).Article 

PubMed 

PubMed Central 

Google Scholar 

Diekötter, T., Billeter, R. & Crist, T. O. Effects of landscape connectivity on the spatial distribution of insect diversity in agricultural mosaic landscapes. Basic Appl. Ecol. 9, 298–307 (2008).Article 

Google Scholar 

Fahrig, L. et al. Resolving the SLOSS dilemma for biodiversity conservation: a research agenda. Biol. Rev. 97, 99–114 (2022).Article 

PubMed 

Google Scholar 

Morante-Filho, J. C., Arroyo-Rodríguez, V. & Faria, D. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. J. Anim. Ecol. 85, 240–250 (2016).Article 

PubMed 

Google Scholar 

Quinn, J. F. & Harrison, S. P. Effects of habitat fragmentation and isolation on species richness: evidence from biogeographic patterns. Oecologia 75, 132–140 (1988).Article 

ADS 

PubMed 

MATH 

Google Scholar 

May, F., Rosenbaum, B., Schurr, F. M. & Chase, J. M. The geometry of habitat fragmentation: effects of species distribution patterns on extinction risk due to habitat conversion. Ecol. Evol. 9, 2775–2790 (2019).Article 

PubMed 

PubMed Central 

Google Scholar 

Lôbo, D., Leão, T., Melo, F. P. L., Santos, A. M. M. & Tabarelli, M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers. Distrib. 17, 287–296 (2011).Article 

Google Scholar 

Arce-Peña, N. P., Arroyo-Rodríguez, V., Avila-Cabadilla, L. D., Moreno, C. E. & Andresen, E. Homogenization of terrestrial mammals in fragmented rainforests: the loss of species turnover and its landscape drivers. Ecol. Appl. 32, e02476 (2022).Article 

PubMed 

Google Scholar 

Tscharntke, T., Batáry, P. & Grass, I. Mixing on- and off-field measures for biodiversity conservation. Trends Ecol. Evol. 39, 726–733 (2024).Article 

PubMed 

Google Scholar 

Fahrig, L. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 29, 615–628 (2020).Article 

Google Scholar 

Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl Acad. Sci. USA 105, 20770–20775 (2008).Article 

ADS 

PubMed 

PubMed Central 

Google Scholar 

Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).Article 

PubMed 

MATH 

Google Scholar 

Jamoneau, A., Chabrerie, O., Closset-Kopp, D. & Decocq, G. Fragmentation alters beta-diversity patterns of habitat specialists within forest metacommunities. Ecography 35, 124–133 (2012).Article 

ADS 

Google Scholar 

Dambros, C. S., Junqueira Izzo, T., Castuera de Oliveira, L., Eduardo Vicente, R. & Peres, C. A. Beta-diversity buffers fragmented landscapes against local species losses. Oikos 2024, e10401 (2024).Article 

ADS 

Google Scholar 

Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).Article 

ADS 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Phillips, H. R. P., Halley, J. M., Urbina-Cardona, J. N. & Purvis, A. The effect of fragment area on site‐level biodiversity. Ecography 41, 1220–1231 (2018).Article 

ADS 

Google Scholar 

Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).Article 

MATH 

Google Scholar 

Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).Article 

PubMed 

PubMed Central 

MATH 

Google Scholar 

Arroyo-Rodríguez, V. et al. Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. J. Ecol. 101, 1449–1458 (2013).Article 

MATH 

Google Scholar 

Sfair, J. C., Arroyo-Rodríguez, V., Santos, B. A. & Tabarelli, M. Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecol. Appl. 26, 1816–1826 (2016).Article 

PubMed 

Google Scholar 

Simberloff, D. & Cox, J. Consequences and costs of conservation corridors. Conserv. Biol. 1, 63–71 (1987).Article 

MATH 

Google Scholar 

Damschen, E. I. et al. Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science 365, 1478–1480 (2019).Article 

ADS 

PubMed 

MATH 

Google Scholar 

Villard, M.-A. & Metzger, J. P. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).Article 

MATH 

Google Scholar 

Banks-Leite, C., Ewers, R. M., Folkard-Tapp, H. & Fraser, A. Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth 3, 672–676 (2020).Article 

ADS 

Google Scholar 

Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).Article 

ADS 

PubMed 

Google Scholar 

Gonçalves-Souza, T. et al. LandFrag: a dataset to investigate the effects of forest loss and fragmentation on biodiversity. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.70015 (2025).Arroyo-Rodríguez, V. & Fahrig, L. Why is a landscape perspective important in studies of primates? Am. J. Primatol. 76, 901–909 (2014).Article 

PubMed 

MATH 

Google Scholar 

Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

ADS 

Google Scholar 

Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

MATH 

Google Scholar 

Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

MATH 

Google Scholar 

Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).Article 

PubMed 

Google Scholar 

Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

MATH 

Google Scholar 

Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.4.7 https://cran.r-project.org/web/packages/DHARMa/ (2022).Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).Article 

PubMed 

MATH 

Google Scholar 

Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

MATH 

Google Scholar 

Gonçalves-Souza, T. & Vancine, M. Zenodo https://zenodo.org/records/14885581 (2025).Download referencesAcknowledgementsL.F.S.M was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) by grant 307984/2022-2. M.H.V. was supported by grant 2022/01899-6 (São Paulo Research Foundation; FAPESP). J.M.C. was supported by the German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (DFG FZT 118-202548816) and an ERC Advanced Grant (MetaChange) funded by the European Union. Views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. We thank N. Gotelli and G. Graves for feedback on the project.Author informationAuthors and AffiliationsInstitute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USAThiago Gonçalves-SouzaDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAThiago Gonçalves-Souza & Nathan J. SandersGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, GermanyJonathan M. ChaseInstitute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), GermanyJonathan M. ChaseKellogg Biological Station and Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USANick M. HaddadLaboratório de Ecologia Espacial e Conservação Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, BrazilMaurício H. VancineSchool of Biological Sciences, University of Western Australia, Perth, Western Australia, AustraliaRaphael K. Didham & Marcelo TabarelliCSIRO Health and Biosecurity, Centre for Environment and Life Sciences, Floreat, Western Australia, AustraliaRaphael K. DidhamCentro de Biociências, Universidade Federal de Pernambuco, Recife, BrazilFelipe L. P. MeloSchool of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, UKFelipe L. P. MeloGrupo de Ecología de la Polinización (EcoPol), INIBIOMA (CONICET, Universidad Nacional del Comahue), San Carlos de Bariloche, ArgentinaMarcelo A. AizenLaboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, BrazilEnrico BernardLaboratório de Ecologia e Conservação, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, BrazilAdriano G. ChiarelloApplied Ecology & Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, BrazilDeborah Faria & Larissa Rocha-SantosDepartment of Environment and Genetics, La Trobe University, Melbourne, Victoria, AustraliaHeloise GibbCenter for Large Landscape Conservation, Bozeman, MT, USAMarcelo G. de LimaIUCN WCPA Connectivity Conservation Specialist Group (CCPG), Cambridge, UKMarcelo G. de LimaCentro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Ilhéus, BrazilLuiz F. S. Magnago & Nathalia Vieira Hissa SafarInstituto de Biologia, Universidade Federal da Bahia, Salvador, BrazilEduardo Mariano-NetoIndependent researcher, São Paulo, BrazilAndré A. NogueiraInstituto de Biologia, Universidade Federal de Uberlândia (UFU), Uberlândia, BrazilAndré Nemésio & Heraldo L. VasconcelosLaboratório de Ecologia e Conservação de Mamíferos, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, BrazilMarcelo PassamaniInstitute of Plant Sciences, University of Bern, Bern, SwitzerlandBruno X. PinhoCentro Nacional de Pesquisa e Conservação de Aves Silvestres (CEMAVE), Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Cabedelo, BrazilRodolpho C. RodriguesDepartamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, BrazilBráulio A. SantosCuerpo Académico de Ecología y Diversidad Faunística. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, MéxicoAlejandra Soto-WerschitzIndependent researcher, Brasília, BrazilMarcio Uehara-PradoNúcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas, BrazilSimone VieiraAuthorsThiago Gonçalves-SouzaView author publicationsYou can also search for this author in

PubMed Google ScholarJonathan M. ChaseView author publicationsYou can also search for this author in

PubMed Google ScholarNick M. HaddadView author publicationsYou can also search for this author in

PubMed Google ScholarMaurício H. VancineView author publicationsYou can also search for this author in

PubMed Google ScholarRaphael K. DidhamView author publicationsYou can also search for this author in

PubMed Google ScholarFelipe L. P. MeloView author publicationsYou can also search for this author in

PubMed Google ScholarMarcelo A. AizenView author publicationsYou can also search for this author in

PubMed Google ScholarEnrico BernardView author publicationsYou can also search for this author in

PubMed Google ScholarAdriano G. ChiarelloView author publicationsYou can also search for this author in

PubMed Google ScholarDeborah FariaView author publicationsYou can also search for this author in

PubMed Google ScholarHeloise GibbView author publicationsYou can also search for this author in

PubMed Google ScholarMarcelo G. de LimaView author publicationsYou can also search for this author in

PubMed Google ScholarLuiz F. S. MagnagoView author publicationsYou can also search for this author in

PubMed Google ScholarEduardo Mariano-NetoView author publicationsYou can also search for this author in

PubMed Google ScholarAndré A. NogueiraView author publicationsYou can also search for this author in

PubMed Google ScholarAndré NemésioView author publicationsYou can also search for this author in

PubMed Google ScholarMarcelo PassamaniView author publicationsYou can also search for this author in

PubMed Google ScholarBruno X. PinhoView author publicationsYou can also search for this author in

PubMed Google ScholarLarissa Rocha-SantosView author publicationsYou can also search for this author in

PubMed Google ScholarRodolpho C. RodriguesView author publicationsYou can also search for this author in

PubMed Google ScholarNathalia Vieira Hissa SafarView author publicationsYou can also search for this author in

PubMed Google ScholarBráulio A. SantosView author publicationsYou can also search for this author in

PubMed Google ScholarAlejandra Soto-WerschitzView author publicationsYou can also search for this author in

PubMed Google ScholarMarcelo TabarelliView author publicationsYou can also search for this author in

PubMed Google ScholarMarcio Uehara-PradoView author publicationsYou can also search for this author in

PubMed Google ScholarHeraldo L. VasconcelosView author publicationsYou can also search for this author in

PubMed Google ScholarSimone VieiraView author publicationsYou can also search for this author in

PubMed Google ScholarNathan J. SandersView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsT.G.-S., J.M.C., N.M.H. and N.J.S. conceived and designed the study. T.G.-S. performed the analyses with support from J.M.C., N.M.H., N.J.S., M.H.V. and F.L.P.M. T.G.-S., J.M.C., N.M.H. and N.J.S. wrote the first version of the paper. F.L.P.M., M.A.A., E.B., A.G.C., R.K.D., D.F., H.G., M.G.d.L., L.F.S.M., E.M.-N., A.A.N., A.N., M.P., B.X.P., L.R.-S., R.C.R., N.V.H.S., B.A.S., A.S.-W., M.T., M.U.-P., H.L.V. and S.V. collected data. J.M.C., T.G.-S. and M.H.V. curated and maintained the data. All authors contributed to the revisions of the manuscript.Corresponding authorCorrespondence to

Thiago Gonçalves-Souza.Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Otso Ovaskainen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Study locations.A global map displaying the locations of the 37 studies, as well as the taxonomic groups sampled in each. Made with Natural Earth. Free vector and raster map data from naturalearthdata.com.Extended Data Fig. 2 Fragment size classes.Number (and percentage) of fragments or continuous forests in each fragment size class, which included fragments smaller than 100, 500 and 1,000 ha, as well as forest larger than 1,000 ha. The values were calculated using all 121 studies from the LandFrag dataset51.Extended Data Fig. 3 Habitat amounts in continuous and fragmented landscapes across all buffer sizes.The buffer size ranged from a radius of 200 m to 2,000 m, in 200 m increments. Large circles represent the mean habitat amount in continuous (blue circles) and fragmented (red circles) landscapes across studies (n = 37). In all panels, each study is represented by a small grey circle, with lines connecting the landscape types, and error bars represent standard deviations.Extended Data Fig. 4 Number of patches in continuous and fragmented landscapes across all buffer sizes.The buffer size ranged from a radius of 200 m to 2,000 m, in 200 m increments. Large circles represent the mean habitat amount in continuous (blue circles) and fragmented (red circles) landscapes across studies (n = 37). In all panels, each study is represented by a small grey circle, with lines connecting the landscape types, and error bars represent standard deviations.Extended Data Fig. 5 Variation in landscape variables related to fragmentation between continuous and fragmented landscapes across all studies.Dots represent the average value (error bars ± 1 s.e.) of the landscape variable (buffer radius = 2,000 m) in a given habitat amount class (n = 37 studies).Extended Data Fig. 6 Differences in α, β and γ diversity between fragmented and continuous landscapes using a meta-analytical approach.This orchard plot shows the effect size (log-response ratio, LRR) of the overall difference between continuous and fragmented landscapes across studies (n = 37). The values of α, β and γ diversity were computed using (a) all possible plot pairs or (b) only the nearest plot pairs (controlling for distance decay effects) in both continuous and fragmented landscapes. We also calculated α, β and γ diversity using the observed species richness without controlling for commonness or sampling effort, and with individual-based rarefaction giving greater relative weight to rare species (rarefied species richness; q = 0) and individual-based rarefaction giving greater relative weight to abundant species (effective number of species given Simpson diversity; q = 2). Solid points represent the LRR comparing α, β and γ diversity between continuous and fragmented landscapes, and the error bars represent 95% confidence intervals. Positive effect sizes indicate that continuous landscapes have higher diversity than fragmented landscapes, while negative effect sizes would indicate that fragmented landscapes have higher diversity. Transparent points indicate effect sizes from individual sites, and their sizes are proportional to the precision (inverse of the square root of the variance) of the individual effect size estimates.Extended Data Fig. 7 Individual contribution of landscape type and habitat amount to α, β and γ diversity.As described in the main text, this analysis represents the scaled importance of predictor variables in GLMMs. The most important variable (that is, the one with the highest unbiased AICc weight value) in a given model receives a value of 1, and the relative contribution of the other variables is calculated based on this benchmark. We performed these analyses using all species, as well as using rarefaction analyses to give weight to rare (order q = 0) and abundant (order q = 2) species.Extended Data Fig. 8 Illustration of the analytical pipeline used to standardize species diversity comparisons between continuous and fragmented landscapes.a, The grey squares represent one large forest in a continuous landscape and four small fragments in a fragmented landscape. The small black squares represent a sample and illustrate how differences in size generally affect the number of samples when comparing landscape types. Furthermore, when comparing these landscape types, there are at least four analytical challenges (1–4) that affect our ability to estimate and compare α, β, and γ diversity. b, Analytical approach used to estimate diversity by (1) standardizing α diversity while accounting for differences in study design and sampling effort, (2) standardizing β and γ diversity by calculating pairwise sample diversity, (3) controlling for distance decay effects to accurately estimate α, β, and γ diversity, and (4) standardizing α, β, and γ diversity through consistent sampling effort adjustments across landscapes. Silhouettes from PhyloPic (http://phylopic.org/), as a courtesy of Andy Wilson, Birgit Lang, Lauren Sumner-Rooney, Mattia Menchetti, Dorota Paczesniak, Birgit Lang, Wouter Koch, Guillaume Dera, Graham Montgomery and Gareth Monger.Extended Data Fig. 9 Method to calculate pairwise diversity for α, β and γ using a patch-landscape study design.a, The average α diversity for each pair is calculated as the mean number of species in pair i and pair ii, while γ diversity is the pooled ‘total’ number of distinct species in a given pair (accounting for the overlap of shared species occurring in both pairs). This pair is selected using two approaches. b, All possible pairs in fragmented or continuous landscapes in each study. c, Only the nearest pairs to control for the effect of distance decay on β and γ diversity. The black squares represent a plot, numbered between 1 and 10. Therefore, a pair can consist of either two plots within the same forest or fragment, or two plots in different fragments.Extended Data Fig. 10 Estimated mixed-effects meta-analysis coefficients using the ‘leave-one-out’ analysis to compare the effects of removing one study from South America versus other continents.Error bars represent 95% confidence intervals, shaded areas represent standard deviations, and points indicate the average coefficient by continent groups (South America in purple vs. other continents in green). The vertical dashed lines represent the observed coefficient value for the main model (n = 37 studies). We estimated α, β and γ diversity using all species, as well as giving greater relative weight for rare (q = 0) or abundant (q = 2) species in two scenarios: all plot pairs and the nearest plot pairs.Supplementary informationSupplementary InformationSupplementary Text 1–5, Supplementary Tables 1–6 and 8–13 and Supplementary ReferencesReporting SummaryPeer Review fileSupplementary Table 7Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleGonçalves-Souza, T., Chase, J.M., Haddad, N.M. et al. Species turnover does not rescue biodiversity in fragmented landscapes.

Nature (2025). https://doi.org/10.1038/s41586-025-08688-7Download citationReceived: 29 May 2024Accepted: 22 January 2025Published: 12 March 2025DOI: https://doi.org/10.1038/s41586-025-08688-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page