Abstract
The systematic cultivation of species of photosynthetically active ‘green’ microorganisms in research labs started in the 1940s. Among these microorganisms, Chlamydomonas represents a genus of green biciliated microalgae, of which Chlamydomonas reinhardtii has become the main describing species. For decades C. reinhardtii has been used as an established model organism in biology, including research areas such as molecular biology of eukaryotes, photosynthesis, light receptors, cell metabolism, the dynamics of microtubule assembly and protein transport along cilia. More recently, the use of suspensions of light-responsive living microorganisms has seen a major expansion from the life sciences to the biophysics, statistical physics, fluid dynamics and bioengineering communities. Studies that substantially advance the state of the art in these research areas require the reliable preparation and maintenance of viable, monodisperse and synchronous cell cultures. Although some technical aspects are shared with standard procedures in cell biology and microbiology, Chlamydomonas and its relatives are photosensitive and, simultaneously, motile, meaning this microorganism requires tailored cultivation protocols that are specific to this species. Here we provide guidance on which Chlamydomonas wild-type and mutant strains are suitable for specific experiments and provide detailed step-by-step procedures to measure culture synchronicity, growth rate of the population, average cell size and motility features. The reliable preparation of cell cultures may facilitate future interdisciplinary research using living suspensions of photoactive microorganisms.
Key points
Short-term Chlamydomonas cultures, prepared in liquid, are used for experiments, whereas long-term cultures are prepared on agar for the preservation of strains.
The preparation of synchronous suspensions of cells facilitates the reproducibility of data obtained in disciplines such as biophysics, statistical physics and fluid dynamics, where motility and collective behavior of large populations of cells is dependent on the health and synchronicity of the culture.
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Change institution
Buy or subscribe
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Learn more
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Structure and reproductive cycles of a Chlamydomonas cell.
Fig. 2: Schematics of the experimental protocol for handling Chlamydomonas and other green microalgae.
Fig. 3: Incubation of agar and liquid cultures of Chlamydomonas strains.
Fig. 4: Manual cell counting to estimate the growth rate of Chlamydomonas cells in a suspension.
Fig. 5: Cell size distribution of a Chlamydomonas suspension.
Fig. 6: Evaluating the synchronicity of Chlamydomonas cells in a suspension.
Fig. 7: Assessment of the velocity distribution of Chlamydomonas cells in confinement.
Fig. 8: Hints of culture contamination and alterations of swimming motility of Chlamydomonas in confinement.
Data availability
The source data supporting Figs. 4–8 can be retrieved via Zenodo at https://doi.org/10.5281/zenodo.11191785 (ref. [73](https://www.nature.com/articles/s41596-024-01135-3#ref-CR73 "Fragkopoulos, A. & Catalan, R. Cultivation of Chlamydomonas cells. Zenodo
https://doi.org/10.5281/zenodo.11191785
(2024).")).
Code availability
The code in MATLAB for cell detection, tracking and calculating the MSD is available via Zenodo at https://doi.org/10.5281/zenodo.13485141 (ref. [74](https://www.nature.com/articles/s41596-024-01135-3#ref-CR74 "Fragkopoulos, A. & Catalan, R. Detection and tracking of Chlamydomonas cells. Zenodo
https://doi.org/10.5281/zenodo.13485141
(2024).")) under Creative Commons Attribution v.4.0 International Public License and includes a user’s guide.
References
Pröschold, T., Marin, B., Schlösser, U. G. & Melkonian, M. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152, 265–300 (2001).
ArticlePubMedGoogle Scholar
Pröschold, T. & Darienko, T. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 1 (Elsevier, 2023).
Gallaher, S. D., Fitz-Gibbon, S. T., Glaesener, A. G., Pellegrini, M. & Merchant, S. S. Chlamydomonas genome resource for laboratory strains reveals a mosaic of sequence variation, identifies true strain histories, and enables strain-specific studies. Plant Cell 27, 2335–2352 (2015).
ArticlePubMedPubMed CentralCASGoogle Scholar
Silflow, C. D. & Lefebvre, P. A. Assembly and motility of eukaryotic cilia and flagella. lessons from Chlamydomonas reinhardtii. Plant Physiol. 127, 1500–1507 (2001).
ArticlePubMedPubMed CentralCASGoogle Scholar
Rochaix, J.-D. Chlamydomonas reinhardtii as the photosynthetic yeast. Annu. Rev. Genet. 29, 209–230 (1995).
ArticlePubMedCASGoogle Scholar
Hegemann, P. Algal sensory photoreceptors. Annu. Rev. Plant Biol. 59, 167–189 (2008).
ArticlePubMedCASGoogle Scholar
Guschina, I. A. & Harwood, J. L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45, 160–186 (2006).
ArticlePubMedCASGoogle Scholar
Silflow, C. D., Mackinder, L. C. & Wingfield, J. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 14 (Elsevier, 2023).
Lorentzen, E. & Lechtreck, K. in The Chlamydomonas Sourcebook Vol. 3 (ed. Dutcher, S.) Ch. 12 (Elsevier, 2023).
Kreis, C. T., Le Blay, M., Linne, C., Makowski, M. M. & Bäumchen, O. Adhesion of Chlamydomonas microalgae to surfaces is switchable by light. Nat. Phys. 14, 45–49 (2018).
ArticleCASGoogle Scholar
Laroussi, T., Jarrahi, M. & Amselem, G. Short-term memory effects in the phototactic behavior of microalgae. Soft Matter 20, 3996–4006 (2024).
ArticlePubMedCASGoogle Scholar
Sjoblad, R. D. & Frederikse, P. H. Chemotactic responses of Chlamydomonas reinhardtii. Mol. Cell. Biol. 1, 1057–1060 (1981).
PubMedPubMed CentralCASGoogle Scholar
Fragkopoulos, A. A. et al. Self-generated oxygen gradients control collective aggregation of photosynthetic microbes. J. R. Soc. Interface 18, 20210553 (2021).
ArticlePubMedPubMed CentralCASGoogle Scholar
Goodenough, U. & Engel, B. D. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 2 (Elsevier, 2023).
Schötz, F., Bathelt, H., Arnold, C.-G. & Schimmer, O. Die architektur und organisation der Chlamydomonas-zelle. Protoplasma 75, 229–254 (1972).
ArticlePubMedGoogle Scholar
Boynton, J., Gillham, N. & Chabot, J. Chloroplast ribosome deficient mutants in the green alga Chlamydomonas reinhardi and the question of chloroplast ribosome function. J. Cell Sci. 10, 267–305 (1972).
ArticlePubMedCASGoogle Scholar
Bloodgood, R. A. in The Chlamydomonas Sourcebook Vol. 3 (ed. Dutcher, S.) Ch. 10 (Elsevier, 2023).
Sale, W. S. & Dutcher, S. K. in The Chlamydomonas Sourcebook Vol. 3 (ed. Dutcher, S.) Ch. 1 (Elsevier, 2023).
Lechtreck, K. F. Ift–cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40, 765–778 (2015).
ArticlePubMedPubMed CentralCASGoogle Scholar
Brown, J. M. & Witman, G. B. Cilia and diseases. BioScience 64, 1126–1137 (2014).
ArticlePubMedPubMed CentralGoogle Scholar
Umen, J. & Liu, D. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 8 (Elsevier, 2023).
Coleman, A. W. The nuclear cell cycle in Chlamydomonas (Chlorophyceae) 1. J. Phycol. 18, 192–195 (1982).
ArticleGoogle Scholar
Harper, J. & John, P. Coordination of division events in the Chlamydomonas cell cycle. Protoplasma 131, 118–130 (1986).
ArticleCASGoogle Scholar
Craigie, R. & Cavalier-Smith, T. Cell volume and the control of the Chlamydomonas cell cycle. J. Cell Sci. 54, 173–191 (1982).
ArticleGoogle Scholar
Goodenough, U. & Lee, J.-H. in The Chlamydomonas Sourcebook Vol. 1 Ch. 3 (ed. Goodenough, U.) 41–64 (Elsevier, 2023).
Schlösser, U. Enzymatisch gesteuerte Freisetzung von Zoosporen bei Chlamydomonas reinhardii Dangeard in Synchronkultur. Arch. Microbiol. 54, 129–159 (1966).
Google Scholar
Goodenough, U., Lee, J.-H. & Snell, W. J. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 9 (Elsevier, 2023).
Hui, C., Schmollinger, S. & Glaesener, A. G. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 11 (Elsevier, 2023).
Sager, R. & Granick, S. Nutritional studies with Chlamydomonas reinhardi. Ann. N. Y. Acad. Sci. 56, 831–838 (1953).
ArticlePubMedCASGoogle Scholar
Ma, F., Salomé, P. A., Merchant, S. S. & Pellegrini, M. Single-cell RNA sequencing of batch Chlamydomonas cultures reveals heterogeneity in their diurnal cycle phase. Plant Cell 33, 1042–1057 (2021).
ArticlePubMedPubMed CentralGoogle Scholar
Calatrava, V., Tejada-Jimenez, M., Sanz-Luque, E., Fernandez, E. & Galvan, A. in The Chlamydomonas Sourcebook Vol. 2 (eds. Grossman, A. R. & Wollman, F.-A.) Ch. 3 (Elsevier, 2023).
Pröschold, T., Harris, E. H. & Coleman, A. W. Portrait of a species: Chlamydomonas reinhardtii. Genetics 170, 1601–1610 (2005).
ArticlePubMedPubMed CentralGoogle Scholar
Gorman, D. S. & Levine, R. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl Acad. Sci. USA 54, 1665–1669 (1965).
ArticlePubMedPubMed CentralCASGoogle Scholar
Kropat, J. et al. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J. 66, 770–780 (2011).
ArticlePubMedPubMed CentralCASGoogle Scholar
Terauchi, A. M., Peers, G., Kobayashi, M. C., Niyogi, K. K. & Merchant, S. S. Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. Photosynth. Res. 105, 39–49 (2010).
ArticlePubMedPubMed CentralCASGoogle Scholar
Ostapenko, T. et al. Curvature-guided motility of microalgae in geometric confinement. Phys. Rev. Lett. 120, 068002 (2018).
ArticlePubMedCASGoogle Scholar
Jin, D., Kotar, J., Silvester, E., Leptos, K. C. & Croze, O. A. Diurnal variations in the motility of populations of biflagellate microalgae. Biophys. J. 119, 2055–2062 (2020).
ArticlePubMedPubMed CentralCASGoogle Scholar
Cammann, J. et al. Emergent probability fluxes in confined microbial navigation. Proc. Natl Acad. Sci. USA 118, e2024752118 (2021).
ArticlePubMedPubMed CentralCASGoogle Scholar
Bruce, V. G. The biological clock in Chlamydomonas reinhardi. J. Protozool. 17, 328–334 (1970).
ArticleGoogle Scholar
Arrieta, J., Barreira, A., Chioccioli, M., Polin, M. & Tuval, I. Phototaxis beyond turning: persistent accumulation and response acclimation of the microalga Chlamydomonas reinhardtii. Sci. Rep. 7, 3447 (2017).
ArticlePubMedPubMed CentralGoogle Scholar
Byrne, T. E., Wells, M. R. & Johnson, C. H. Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in Chlamydomonas. Plant Physiol. 98, 879–886 (1992).
ArticlePubMedPubMed CentralCASGoogle Scholar
Choi, H. I., Kim, J. Y. H., Kwak, H. S., Sung, Y. J. & Sim, S. J. Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. Biomicrofluidics 10, 014121 (2016).
ArticlePubMedPubMed CentralGoogle Scholar
Straley, S. C. & Bruce, V. G. Stickiness to glass: circadian changes in the cell surface of Chlamydomonas reinhardi. Plant Physiol. 63, 1175–1181 (1979).
ArticlePubMedPubMed CentralCASGoogle Scholar
Kreis, C. T., Grangier, A. & Bäumchen, O. In vivo adhesion force measurements of Chlamydomonas on model substrates. Soft Matter 15, 3027–3035 (2019).
ArticlePubMedCASGoogle Scholar
Till, S., Ebmeier, F., Fragkopoulos, A. A., Mazza, M. G. & Bäumchen, O. Motility and self-organization of gliding Chlamydomonas populations. Phys. Rev. Res. 4, L042046 (2022).
ArticleCASGoogle Scholar
Cavalier-Smith, T. Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J. Cell Sci. 16, 529–556 (1974).
ArticlePubMedCASGoogle Scholar
Mittag, M., Kiaulehn, S. & Johnson, C. H. The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol. 137, 399–409 (2005).
ArticlePubMedPubMed CentralCASGoogle Scholar
Böddeker, T. J., Karpitschka, S., Kreis, C. T., Magdelaine, Q. & Bäumchen, O. Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors. J. R. Soc. Interface 17, 20190580 (2020).
ArticlePubMedPubMed CentralGoogle Scholar
Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110, 1187–1192 (2013).
ArticlePubMedPubMed CentralCASGoogle Scholar
Williams, C. R. & Bees, M. A. A tale of three taxes: photo-gyro-gravitactic bioconvection. J. Exp. Biol. 214, 2398–2408 (2011).
ArticlePubMedGoogle Scholar
Crutchfield, A., Diller, K. & Brand, J. Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta). Eur. J. Phycol. 34, 43–52 (1999).
ArticleGoogle Scholar
Day, J. G. Cryopreservation of microalgae and cyanobacteria. Methods Mol. Biol. 141–151 (2007).
Piasecki, B. P., Diller, K. R. & Brand, J. J. Cryopreservation of Chlamydomonas reinhardtii: a cause of low viability at high cell density. Cryobiology 58, 103–109 (2009).
ArticlePubMedCASGoogle Scholar
Hlavová, M., Vítová, M. & Bišová, K. Synchronization of green algae by light and dark regimes for cell cycle and cell division studies. Methods Mol. Biol. 1370, 3–16 (2016).
ArticlePubMedGoogle Scholar
Zhang, N. et al. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun. Biol. 5, 460 (2022).
ArticlePubMedPubMed CentralCASGoogle Scholar
Order Chlamydomonas strains from Chlamydomonas resource center (CC). Strains Archiveshttps://www.chlamycollection.org/products/strains/ (2025).
Order Chlamydomonas strains from Sammlung von Algenkulturen Göttingen (SAG). MBM ScienceBridgehttps://sciencebridge.de/en/algae.html (2025).
Damoo, D. Y. & Durnford, D. G. Long-term survival of Chlamydomonas reinhardtii during conditional senescence. Arch. Microbiol. 203, 5333–5344 (2021).
ArticlePubMedCASGoogle Scholar
Guide for cell counting using a hemocytometer (Sigma Aldrich). Milipore Sigmahttps://www.sigmaaldrich.com/DE/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/mammalian-cell-culture/cell-quantification (2025).
Catalan, R. E. et al. Light-regulated adsorption and desorption of Chlamydomonas cells at surfaces. Soft Matter 19, 306–314 (2023).
ArticlePubMedCASGoogle Scholar
Bassi, R., Soen, S. Y., Frank, G., Zuber, H. & Rochaix, J. Characterization of chlorophyll a/b proteins of photosystem I from Chlamydomonas reinhardtii. J. Biol. Chem. 267, 25714–25721 (1992).
ArticlePubMedCASGoogle Scholar
Surzycki, S. in Methods in Enzymo logy Vol. 23 (ed. Pietro, A. S.) 67–73 (Elsevier, 1971).
Blair, D. & Dufresne, E. The matlab particle tracking code repository. Matlabhttp://physics.georgetown.edu/matlab (2008).
Kessler, J. O. Individual and collective fluid dynamics of swimming cells. J. Fluid Mech. 173, 191–205 (1986).
ArticleGoogle Scholar
Cooper, M. B. & Smith, A. G. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr. Opin. Plant Biol. 26, 147–153 (2015).
ArticlePubMedGoogle Scholar
Aiyar, P. et al. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nat. Commun. 8, 1756 (2017).
ArticlePubMedPubMed CentralGoogle Scholar
Carrasco Flores, D. et al. A mutualistic bacterium rescues a green alga from an antagonist. Proc. Natl Acad. Sci. USA 121, e2401632121 (2024).
ArticlePubMedPubMed CentralGoogle Scholar
Kawachi, M. & Noël, M.-H. in Algal Culturing Techniques (ed. Andersen, R. A.) 65–81 (Elsevier, 2005).
Guillard, R. R. in Algal Culturing Techniques (ed. Andersen, R. A.) 117–132 (Elsevier, 2005).
Meeuse, B. A simple method for concentrating phototactic flagellates and separating them from debris. Arch. Mikrobiol. 45, 423–424 (1963).
ArticlePubMedCASGoogle Scholar
Sieracki, M., Poulton, N. & Crosbie, N. in Algal Culturing Techniques (ed. Andersen, R. A.) 101–116 (Elsevier, 2005).
Kim, H. S., Devarenne, T. P. & Han, A. Microfluidic systems for microalgal biotechnology: a review. Algal Res. 30, 149–161 (2018).
ArticleGoogle Scholar
Fragkopoulos, A. & Catalan, R. Cultivation of Chlamydomonas cells. Zenodohttps://doi.org/10.5281/zenodo.11191785 (2024).
Fragkopoulos, A. & Catalan, R. Detection and tracking of Chlamydomonas cells. Zenodohttps://doi.org/10.5281/zenodo.13485141 (2024).
Morishita, J., Tokutsu, R., Minagawa, J., Hisabori, T. & Wakabayashi, K.-I. Characterization of Chlamydomonas reinhardtii mutants that exhibit strong positive phototaxis. Plants 10, 1483 (2021).
ArticlePubMedPubMed CentralCASGoogle Scholar
Ide, T. et al. Identification of the agg1 mutation responsible for negative phototaxis in a “wild-type” strain of Chlamydomonas reinhardtii. Biochem. Biophys. Rep. 7, 379–385 (2016).
PubMedPubMed CentralGoogle Scholar
Claes, H. Autolyse der Zellwand bei den Gameten von Chlamydomonas reinhardii. Arch. Mikrobiol 78, 180–188 (1971).
ArticlePubMedCASGoogle Scholar
Download references
Acknowledgements
The authors thank the Göttingen Algae Culture Collection (SAG) for providing SAG-labeled microalgal strains used in this work and T. Pröschold for insightful discussions. R.E.C. acknowledges generous financial support from the German Academic Exchange Service (DAAD).
Author information
Author notes
These authors contributed equally: Rodrigo E. Catalan, Alexandros A. Fragkopoulos.
Authors and Affiliations
Experimental Physics V, University of Bayreuth, Bayreuth, Germany
Rodrigo E. Catalan, Alexandros A. Fragkopoulos, Antoine Girot & Oliver Bäumchen
Department of Experimental Phycology and SAG Culture Collection of Algae, Georg-August-University Göttingen, Göttingen, Germany
Maike Lorenz
Authors
Rodrigo E. Catalan
View author publications
You can also search for this author in PubMedGoogle Scholar
2. Alexandros A. Fragkopoulos
View author publications
You can also search for this author in PubMedGoogle Scholar
3. Antoine Girot
View author publications
You can also search for this author in PubMedGoogle Scholar
4. Maike Lorenz
View author publications
You can also search for this author in PubMedGoogle Scholar
5. Oliver Bäumchen
View author publications
You can also search for this author in PubMedGoogle Scholar
Contributions
All authors contributed to the development of the protocol. R.E.C., A.A.F. and O.B. led the data analysis. R.E.C. and A.A.F. wrote the first draft of the manuscript. All authors contributed to the discussions and the final version of the manuscript.
Corresponding author
Correspondence to Oliver Bäumchen.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Protocols thanks Tyler W. Johannes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Key References
Kreis, C. T. et al. Nat. Phys. 14, 45–49 (2018): https://doi.org/10.1038/nphys4258
Cammann, J. et al. Proc. Natl Acad. Sci. USA 118, e2024752118 (2021): https://doi.org/10.1073/pnas.2024752118
Ostapenko, T. et al. Phys. Rev. Lett. 120, 068002 (2018): https://doi.org/10.1103/PhysRevLett.120.068002
Böddeker, T. J. et al. J. R. Soc. Interface 17, 20190580 (2020): https://doi.org/10.1098/rsif.2019.0580
Till, S. et al. Phys. Rev. Res 4, L042046 (2022): https://doi.org/10.1103/PhysRevResearch.4.L042046
Supplementary information
Reporting Summary
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Catalan, R.E., Fragkopoulos, A.A., Girot, A. et al. Preparation, maintenance and propagation of synchronous cultures of photoactive Chlamydomonas cells. Nat Protoc (2025). https://doi.org/10.1038/s41596-024-01135-3
Download citation
Received:14 May 2024
Accepted:12 December 2024
Published:13 March 2025
DOI:https://doi.org/10.1038/s41596-024-01135-3
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative