nature.com

Context dependence in assembly code for supramolecular peptide materials and systems

Abstract

Living systems provide the most sophisticated materials known. These materials are created from a few dozen building blocks that are driven to self-organize by covalent and non-covalent interactions. Biology’s building blocks can be repurposed for the design of synthetic materials that life has not explored. In this Review, we examine the bottom-up design, discovery and evolution of self-assembling peptides by considering the entire supramolecular interaction space available to their constituent amino acids. Our approach focuses on sequence context, or how peptide sequence and environmental conditions collectively influence peptide self-assembly outcomes. We discuss examples of peptides that assemble through multimodal backbone, side chain and water interactions. We conclude that a more systematic (comparing sequences side-by-side), integrated (pairing computation and experiment) and holistic (considering peptide, solvent and environment) approach is required to better understand and fully exploit amino acids as a universal assembly code. This goal is particularly timely, because laboratory automation and artificial intelligence now have the potential to accelerate discoveries in these highly modular and complex materials, beyond the limited sequence space that biology uses.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Biology’s universal assembly code.

Fig. 2: Sequence determines the degree of order in peptide structures.

Fig. 3: Ordered systems.

Fig. 4: Disordered systems.

Fig. 5: Supramolecular dispersions.

Fig. 6: Environment-dependent assembly.

Fig. 7: Sequence evolution via dynamic combinatorial libraries.

References

Sies, H., Mailloux, R. J. & Jakob, U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 25, 701–719 (2024).

CASPubMedGoogle Scholar

Kojima, K. & Sudo, Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv. 13, 5367–5381 (2023).

CASPubMedPubMed CentralGoogle Scholar

Ibusuki, R. et al. Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 375, 1159–1164 (2022).

CASPubMedGoogle Scholar

Scheuerl, T. et al. Bacterial adaptation is constrained in complex communities. Nat. Commun. 11, 754 (2020).

CASPubMedPubMed CentralGoogle Scholar

Yang, Y. et al. Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 634, 833–841 (2024).

CASPubMedGoogle Scholar

Finkelstein-Zuta, G. et al. A self-healing multispectral transparent adhesive peptide glass. Nature 630, 368–374 (2024).

CASPubMedGoogle Scholar

Guzzo, A. V. The influence of amino acid sequence on protein structure. Biophys. J. 5, 809–822 (1965).

CASPubMedPubMed CentralGoogle Scholar

Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

CASPubMedPubMed CentralGoogle Scholar

Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).

CASPubMedPubMed CentralGoogle Scholar

Wilson, C. J. et al. Biomolecular assemblies: moving from observation to predictive design. Chem. Rev. 118, 11519–11574 (2018).

CASPubMedPubMed CentralGoogle Scholar

Hoffnagle, A. M. & Tezcan, F. A. Atomically accurate design of metalloproteins with predefined coordination geometries. J. Am. Chem. Soc. 145, 14208–14214 (2023).

CASPubMedPubMed CentralGoogle Scholar

Sinha, N. J., Langenstein, M. G., Pochan, D. J., Kloxin, C. J. & Saven, J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev. 121, 13915–13935 (2021).

CASPubMedGoogle Scholar

Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93–96 (2001).

CASPubMedGoogle Scholar

Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).

CASPubMedGoogle Scholar

Meisenhelter, J. E. et al. Impact of peptide length and solution conditions on tetrameric coiled coil formation. Biomacromolecules 25, 3775–3783 (2024).

CASPubMedGoogle Scholar

Kassem, S. & Ulijn, R. V. Designed complex peptide‐based adaptive systems: a bottom‐up approach. ChemSystemsChem 5, e202200040 (2023).

CASGoogle Scholar

Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide Hydrogels. Nature 493, 651–655 (2013).

CASPubMedGoogle Scholar

de Greef, T. F. A. & Meijer, E. W. Supramolecular polymers. Nature 453, 171–173 (2008).

PubMedGoogle Scholar

Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

CASPubMedGoogle Scholar

Ramakrishnan, M., van Teijlingen, A., Tuttle, T. & Ulijn, R. V. Integrating computation, experiment, and machine learning in the design of peptide‐based supramolecular materials and systems. Angew. Chem. 135, e202218067 (2023).

Google Scholar

Grisoni, F. et al. Designing anticancer peptides by constructive machine learning. ChemMedChem 13, 1300–1302 (2018).

CASPubMedGoogle Scholar

Plisson, F., Ramírez-Sánchez, O. & Martínez-Hernández, C. Machine learning-guided discovery and design of non-hemolytic peptides. Sci. Rep. 10, 16581 (2020).

CASPubMedPubMed CentralGoogle Scholar

Kaygisiz, K. et al. Inverse design of viral infectivity-enhancing peptide fibrils from continuous protein-vector embeddings. Biomater. Sci. 11, 5251–5261 (2023).

CASPubMedGoogle Scholar

Batra, R. et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 14, 1427–1435 (2022).

CASPubMedPubMed CentralGoogle Scholar

Wang, J. et al. Deep learning empowers the discovery of self‐assembling peptides with over 10 trillion sequences. Adv. Sci. 10, e2301544 (2023).

Google Scholar

Xu, T. et al. Accelerating the prediction and discovery of peptide hydrogels with human-in-the-loop. Nat. Commun. 14, 3880 (2023).

CASPubMedPubMed CentralGoogle Scholar

Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

CASPubMedGoogle Scholar

Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

CASPubMedPubMed CentralGoogle Scholar

Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

PubMedGoogle Scholar

Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

CASPubMedGoogle Scholar

Djalali, S., Yadav, N. & Delbianco, M. Towards glycan foldamers and programmable assemblies. Nat. Rev. Mater. 9, 190–201 (2024).

Google Scholar

Wang, G. Z., Chen, L. L. & Zhang, H. Y. Neighboring-site effects of amino acid mutation. Biochem. Biophys. Res. Commun. 16, 531–534 (2007).

Google Scholar

Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

CASPubMedPubMed CentralGoogle Scholar

Tejedor, A. R. et al. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nat. Commun. 13, 5717 (2022).

CASPubMedPubMed CentralGoogle Scholar

Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker-spacer polypeptides. Nat. Commun. 12, 6620 (2021).

CASPubMedPubMed CentralGoogle Scholar

White, S. H. & Wimley, W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta Rev. Biomembr. 1376, 339–352 (1998).

CASGoogle Scholar

Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).

CASPubMedGoogle Scholar

Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848 (1996).

CASPubMedGoogle Scholar

Bohórquez, H. J., Suárez, C. F. & Patarroyo, M. E. Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements. Sci. Rep. 7, 7717 (2017).

PubMedPubMed CentralGoogle Scholar

Zhang, S. et al. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc. Natl Acad. Sci. USA 115, E8652–E8659 (2018).

CASPubMedPubMed CentralGoogle Scholar

Mahadevi, A. S. & Sastry, G. N. Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138 (2013).

CASPubMedGoogle Scholar

Martinez, C. R. & Iverson, B. L. Rethinking the term ‘pi-stacking’. Chem. Sci. 3, 2191 (2012).

CASGoogle Scholar

Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).

CASPubMedGoogle Scholar

Ioerger, T. R. The context-dependence of amino acid properties. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 157–166 (1997).

CASPubMedGoogle Scholar

Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001).

CASPubMedGoogle Scholar

Fujiwara, K., Toda, H. & Ikeguchi, M. Dependence of alpha-helical and beta-sheet amino acid propensities on the overall protein fold type. BMC Struct. Biol. 12, 18 (2012).

CASPubMedPubMed CentralGoogle Scholar

Williamson, M. P. The structure and function of proline-rich regions in proteins. Biochem. J. 297, 249–260 (1994).

CASPubMedPubMed CentralGoogle Scholar

Vihinen, M., Torkkila, E. & Riikonen, P. Accuracy of protein flexibility predictions. Proteins Struct. Funct. Bioinforma. 19, 141–149 (1994).

CASGoogle Scholar

Andersen, O. S., Greathouse, D. V., Providence, L. L., Becker, M. D. & Koeppe, R. E. Importance of tryptophan dipoles for protein function: 5-fluorination of tryptophans in gramicidin a channels. J. Am. Chem. Soc. 120, 5142–5146 (1998).

CASGoogle Scholar

Reches, M. & Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 4, 581–585 (2004).

CASGoogle Scholar

Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).

CASPubMedPubMed CentralGoogle Scholar

Bellotto, O. et al. Supramolecular hydrogels and water channels of differing diameters from dipeptide isomers. Biomacromolecules 25, 2476–2485 (2024).

CASPubMedGoogle Scholar

de Groot, N. S., Parella, T., Aviles, F. X., Vendrell, J. & Ventura, S. Ile-Phe dipeptide self-assembly: clues to amyloid formation. Biophys. J. 92, 1732–1741 (2007).

PubMedGoogle Scholar

Görbitz, C. H. Microporous organic materials from hydrophobic dipeptides. Chem. Eur. J. 13, 1022–1031 (2007).

PubMedGoogle Scholar

Ulijn, R. V. & Lampel, A. Order/disorder in protein and peptide-based biomaterials. Isr. J. Chem. https://doi.org/10.1002/ijch.201900051.

Holehouse, A. S., Ginell, G. M., Griffith, D. & Böke, E. Clustering of aromatic residues in prion-like domains can tune the formation, state, and organization of biomolecular condensates. Biochemistry 60, 3566–3581 (2021).

CASPubMedGoogle Scholar

Abbas, M., Lipiński, W. P., Nakashima, K. K., Huck, W. T. S. & Spruijt, E. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021).

CASPubMedGoogle Scholar

Lampel, A. et al. Polymeric peptide pigments with sequence-encoded properties. Science 356, 1064–1068 (2017).

CASPubMedGoogle Scholar

Görbitz, C. H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001).

PubMedGoogle Scholar

Lipiński, W. P. et al. Fibrils emerging from droplets: molecular guiding principles behind phase transitions of a short peptide‐based condensate studied by solid‐state NMR. Chemistry 29, e202301159 (2023).

PubMedGoogle Scholar

Hiew, S. H. et al. Modulation of mechanical properties of short bioinspired peptide materials by single amino-acid mutations. J. Am. Chem. Soc. 145, 3382–3393 (2023).

CASPubMedGoogle Scholar

Chan, K. H., Xue, B., Robinson, R. C. & Hauser, C. A. E. Systematic moiety variations of ultrashort peptides produce profound effects on self-assembly, nanostructure formation, hydrogelation, and phase transition. Sci. Rep. 7, 12897 (2017).

PubMedPubMed CentralGoogle Scholar

Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput. Sci. 1, 732–743 (2021).

PubMedPubMed CentralGoogle Scholar

Yu, T. & Schatz, G. C. Free energy profile and mechanism of self-assembly of peptide amphiphiles based on a collective assembly coordinate. J. Phys. Chem. B 117, 9004–9013 (2013).

CASPubMedGoogle Scholar

Zhang, X. et al. The entropy-controlled strategy in self-assembling systems. Chem. Soc. Rev. 52, 6806–6837 (2023).

CASPubMedGoogle Scholar

Tang, C., Smith, A. M., Collins, R. F., Ulijn, R. V. & Saiani, A. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir 25, 9447–9453 (2009).

CASPubMedGoogle Scholar

Vargo, E. et al. Using machine learning to predict and understand complex self‐assembly behaviors of a multicomponent nanocomposite. Adv. Mater. 34, e202203168 (2022).

Google Scholar

Abdin, O. & Kim, P. M. Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion. Nat. Mach. Intell. 6, 775–786 (2024).

Google Scholar

Ramos Sasselli, I., Halling, P. J., Ulijn, R. V. & Tuttle, T. Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10, 2661–2668 (2016).

CASGoogle Scholar

Hughes, M. et al. Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter 7, 10032 (2011).

CASGoogle Scholar

Yuan, C. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).

CASGoogle Scholar

Vijayakanth, T. et al. Peptide hydrogen-bonded organic frameworks. Chem. Soc. Rev. 53, 3640–3655 (2024).

CASPubMedGoogle Scholar

Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

CASPubMedGoogle Scholar

Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

CASPubMedGoogle Scholar

Castelletto, V., Hamley, I. W., Harris, P. J. F., Olsson, U. & Spencer, N. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. i. Morphological investigation. J. Phys. Chem. B 113, 9978–9987 (2009).

CASPubMedGoogle Scholar

Marchesan, S., Easton, C. D., Kushkaki, F., Waddington, L. & Hartley, P. G. Tripeptide self-assembled hydrogels: unexpected twists of chirality. Chem. Commun. 48, 2195–2197 (2012).

CASGoogle Scholar

Marchesan, S. et al. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. Nanoscale 4, 6752 (2012).

CASPubMedGoogle Scholar

Smith, A. J., Ali, F. I. & Soldatov, D. V. Glycine homopeptides: the effect of the chain length on the crystal structure and solid state reactivity. CrystEngComm 16, 7196–7208 (2014).

CASGoogle Scholar

Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. Hirshfeld atom refinement. IUCrJ 1, 361–379 (2014).

CASPubMedPubMed CentralGoogle Scholar

Fletterick, R. J., Tsai, C., Hughes, R. E. & Tsai, C.-C. The crystal and molecular structure of l-alanyl-l-alanine. J. Phys. Chem. 75, 918–992 (1971).

CASPubMedGoogle Scholar

Görbitz, C. H. Hydrophobic dipeptides: the final piece in the puzzle. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 74, 311–318 (2018).

Google Scholar

Catalano, L. & Naumov, P. Exploiting rotational motion in molecular crystals. CrystEngComm 20, 5872–5883 (2018).

CASGoogle Scholar

Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).

CASPubMedGoogle Scholar

Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

CASPubMedGoogle Scholar

Martí-Gastaldo, C. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat. Chem. 6, 343–351 (2014).

PubMedGoogle Scholar

Martí‐Gastaldo, C., Warren, J. E., Stylianou, K. C., Flack, N. L. O. & Rosseinsky, M. J. Enhanced stability in rigid peptide‐based porous materials. Angew. Chem. Int. Ed. 51, 11044–11048 (2012).

Google Scholar

Ulijn, R. V. et al. Water‐vapor responsive metallo‐peptide nanofibers. Angew. Chem. Int. Ed. 63, e202409391 (2024).

Google Scholar

Boas, D. et al. A multifunctional drug delivery system based on switchable peptide-stabilized emulsions. Chem 10, 1821–1838 (2024).

CASGoogle Scholar

Piotrowska, R. et al. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nat. Mater. 20, 403–409 (2021).

CASPubMedGoogle Scholar

Sheehan, F. K. et al. Aromatic zipper topology dictates water‐responsive actuation in phenylalanine‐based crystals. Small 19, 2207773 (2023).

CASGoogle Scholar

Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015).

CASPubMedGoogle Scholar

Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).

PubMedPubMed CentralGoogle Scholar

Kaygisiz, K. et al. Peptide amphiphiles as biodegradable adjuvants for efficient retroviral gene delivery. Adv. Healthc. Mater. 13, 2301364 (2024).

CASPubMedGoogle Scholar

Bianco, S. et al. Mechanical release of homogenous proteins from supramolecular gels. Nature 631, 544–548 (2024).

CASPubMedPubMed CentralGoogle Scholar

Kaygisiz, K. et al. Data-mining unveils structure–property–activity correlation of viral infectivity enhancing self-assembling peptides. Nat. Commun. 14, 5121 (2023).

CASPubMedPubMed CentralGoogle Scholar

Iscen, A., Kaygisiz, K., Synatschke, C. V., Weil, T. & Kremer, K. Multiscale simulations of self-assembling peptides: surface and core hydrophobicity determine fibril stability and amyloid aggregation. Biomacromolecules 25, 3063–3075 (2024).

CASPubMedPubMed CentralGoogle Scholar

Prabakaran, R. et al. Effect of charged mutation on aggregation of a pentapeptide: insights from molecular dynamics simulations. Proteins Struct. Funct. Bioinforma. 90, 405–417 (2022).

CASGoogle Scholar

MacPherson, D. S. et al. Tuning supramolecular chirality in iodinated amphiphilic peptides through tripeptide linker editing. Biomacromolecules 25, 2277–2285 (2023).

Google Scholar

Yuan, C. et al. High-entropy non-covalent cyclic peptide glass. Nat. Nanotechnol. 19, 1840–1848 (2024).

CASPubMedGoogle Scholar

Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).

CASPubMedPubMed CentralGoogle Scholar

Forman-Kay, J. D. & Mittag, T. From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure 21, 1492–1499 (2013).

CASPubMedPubMed CentralGoogle Scholar

Van Der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 9, 6589–6631 (2014).

Google Scholar

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 1, 285–298 (2017).

Google Scholar

Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

CASPubMedGoogle Scholar

Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).

CASPubMedPubMed CentralGoogle Scholar

Romero, P. et al. Sequence complexity of disordered protein. Proteins Struct. Funct. Genet. 42, 38–48 (2001).

CASPubMedGoogle Scholar

Theillet, F.-X. et al. The alphabet of intrinsic disorder. Intrinsically Disord. Proteins 1, e24360 (2013).

PubMedPubMed CentralGoogle Scholar

Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2024).

CASPubMedGoogle Scholar

Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).

CASPubMedGoogle Scholar

Yuan, C., Li, Q., Xing, R., Li, J. & Yan, X. Peptide self-assembly through liquid-liquid phase separation. Chem 9, 2425–2445 (2023).

CASGoogle Scholar

Akahoshi, Y. et al. Phase-separation propensity of non-ionic amino acids in peptide-based complex coacervation systems. Biomacromolecules 24, 704–713 (2023).

CASPubMedGoogle Scholar

Rubinstein, M. & Dobrynin, A. Solutions of associative polymers. Trends Polym. Sci. 5, 181–186 (1997).

CASGoogle Scholar

Villegas, J. A. & Levy, E. D. A unified statistical potential reveals that amino acid stickiness governs nonspecific recruitment of client proteins into condensates. Protein Sci. 31, e4361 (2022).

CASPubMedPubMed CentralGoogle Scholar

Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

CASPubMedPubMed CentralGoogle Scholar

Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–π interactions. Cell 173, 720–734.e15 (2018).

CASPubMedPubMed CentralGoogle Scholar

Vernon, R. M. et al. Pi–Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).

Google Scholar

Chandler, D., Weeks, J. D. & Andersen, H. C. van der Waals picture of liquids, solids, and phase transformations. Science 220, 787–794 (1983).

CASPubMedGoogle Scholar

Hong, Y. et al. Hydrophobicity of arginine leads to reentrant liquid–liquid phase separation behaviors of arginine-rich proteins. Nat. Commun. 13, 7326 (2022).

PubMedPubMed CentralGoogle Scholar

Rekhi, S. et al. Expanding the molecular language of protein liquid–liquid phase separation. Nat. Chem. 16, 1113–1124 (2024).

CASPubMedPubMed CentralGoogle Scholar

Workman, R. J. & Pettitt, B. M. Thermodynamic compensation in peptides following liquid–liquid phase separation. J. Phys. Chem. B 125, 6431–6439 (2021).

CASPubMedPubMed CentralGoogle Scholar

Poudyal, M. et al. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu. Nat. Commun. 14, 6199 (2023).

CASPubMedPubMed CentralGoogle Scholar

Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007).

CASPubMedGoogle Scholar

Tang, Y. et al. Prediction and characterization of liquid–liquid phase separation of minimalistic peptides. Cell Rep. Phys. Sci. 2, 100579 (2021).

CASGoogle Scholar

Frederix, P. W. J. M., Ulijn, R. V., Hunt, N. T. & Tuttle, T. Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J. Phys. Chem. Lett. 2, 2380–2384 (2011).

CASPubMedPubMed CentralGoogle Scholar

Hughes, M. et al. Differential supramolecular organisation of fmoc-dipeptides with hydrophilic terminal amino acid residues by biocatalytic self-assembly. Soft Matter 8, 11565 (2012).

CASGoogle Scholar

Kim, J. et al. Role of water in directing diphenylalanine assembly into nanotubes and nanowires. Adv. Mater. 22, 583–587 (2010).

CASPubMedGoogle Scholar

Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

CASPubMedGoogle Scholar

Sasselli, I. R. et al. Using experimental and computational energy equilibration to understand hierarchical self-assembly of fmoc-dipeptide amphiphiles. Soft Matter 12, 8307–8315 (2016).

CASPubMedGoogle Scholar

Spruijt, E., Westphal, A. H., Borst, J. W., Cohen Stuart, M. A. & van der Gucht, J. Binodal compositions of polyelectrolyte complexes. Macromolecules 43, 6476–6484 (2010).

CASGoogle Scholar

Fuoss, R. M. & Sadek, H. Mutual interaction of polyelectrolytes. Science 110, 552–554 (1949).

CASPubMedGoogle Scholar

Azzari, P. & Mezzenga, R. LLPS vs. LLCPS: analogies and differences. Soft Matterhttps://doi.org/10.1039/D2SM01455F (2023).

Overbeek, J. T. G. & Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 49, 7–26 (1957).

CASGoogle Scholar

Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 51, 481–587 (2002).

Google Scholar

Lytle, T. K., Chang, L. W., Markiewicz, N., Perry, S. L. & Sing, C. E. Designing electrostatic interactions via polyelectrolyte monomer sequence. ACS Cent. Sci. 5, 709–718 (2019).

CASPubMedPubMed CentralGoogle Scholar

Danielsen, S. P. O., McCarty, J., Shea, J.-E., Delaney, K. T. & Fredrickson, G. H. Molecular design of self-coacervation phenomena in block polyampholytes. Proc. Natl Acad. Sci. USA 116, 8224–8232 (2019).

CASPubMedPubMed CentralGoogle Scholar

Naz, M. et al. Self-assembly of stabilized droplets from liquid–liquid phase separation for higher-order structures and functions. Commun. Chem. 7, 79 (2024).

PubMedPubMed CentralGoogle Scholar

Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

CASGoogle Scholar

Dompé, M. et al. Thermoresponsive complex coacervate‐based underwater adhesive. Adv. Mater. 31, 1808179 (2019).

Google Scholar

Capasso Palmiero, U. et al. Programmable zwitterionic droplets as biomolecular sorters and model of membraneless organelles. Adv. Mater. 34, 2104837 (2022).

CASGoogle Scholar

Sathyavageeswaran, A., Bonesso Sabadini, J. & Perry, S. L. Self-assembling polypeptides in complex coacervation. Acc. Chem. Res. 57, 386–398 (2024).

CASPubMedGoogle Scholar

Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).

CASPubMedPubMed CentralGoogle Scholar

Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

PubMedGoogle Scholar

Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).

CASPubMedPubMed CentralGoogle Scholar

Kim, S. et al. Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic π electrons in seawater. ACS Nano 11, 6764–6772 (2017).

CASPubMedGoogle Scholar

Wang, Q. & Schlenoff, J. B. The polyelectrolyte complex/coacervate continuum. Macromolecules 47, 3108–3116 (2014).

CASGoogle Scholar

Gabryelczyk, B. et al. Hydrogen bond guidance and aromatic stacking drive liquid–liquid phase separation of intrinsically disordered histidine-rich peptides. Nat. Commun. 10, 5465 (2019).

PubMedPubMed CentralGoogle Scholar

Hazra, M. K. & Levy, Y. Cross-talk of cation−π interactions with electrostatic and aromatic interactions: a salt-dependent trade-off in biomolecular condensates. J. Phys. Chem. Lett. 14, 8460–8469 (2023).

CASPubMedPubMed CentralGoogle Scholar

Li, L. et al. Phase behavior and salt partitioning in polyelectrolyte complex coacervates. Macromolecules 51, 2988–2995 (2018).

CASGoogle Scholar

Wu, X., Sun, Y., Yu, J. & Miserez, A. Tuning the viscoelastic properties of peptide coacervates by single amino acid mutations and salt kosmotropicity. Commun. Chem. 7, 5 (2024).

CASPubMedPubMed CentralGoogle Scholar

Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).

CASPubMedPubMed CentralGoogle Scholar

Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015).

CASPubMedPubMed CentralGoogle Scholar

Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

CASPubMedPubMed CentralGoogle Scholar

Maeda, I. et al. Comparison between coacervation property and secondary structure of synthetic peptides, Ile-containing elastin-derived pentapeptide repeats. Protein Pept. Lett. 20, 905–910 (2013).

CASPubMedGoogle Scholar

Maeda, I. et al. Design of phenylalanine-containing elastin-derived peptides exhibiting highly potent self-assembling capability. Protein Pept. Lett. 22, 934–939 (2015).

CASPubMedGoogle Scholar

Taniguchi, S., Watanabe, N., Nose, T. & Maeda, I. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues. J. Pept. Sci. 22, 36–42 (2016).

CASPubMedGoogle Scholar

Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).

CASPubMedPubMed CentralGoogle Scholar

Baruch Leshem, A. et al. Biomolecular condensates formed by designer minimalistic peptides. Nat. Commun. 14, 421 (2023).

Google Scholar

Fossat, M. J., Zeng, X. & Pappu, R. V. Uncovering differences in hydration free energies and structures for model compound mimics of charged side chains of amino acids. J. Phys. Chem. B 125, 4148–4161 (2021).

CASPubMedPubMed CentralGoogle Scholar

Mason, P. E. et al. The structure of aqueous guanidinium chloride solutions. J. Am. Chem. Soc. 126, 11462–11470 (2004).

CASPubMedGoogle Scholar

Sementa, D. et al. Sequence‐tunable phase behavior and intrinsic fluorescence in dynamically interacting peptides. Angew. Chem. Int. Ed. 62, e202311479 (2023).

CASGoogle Scholar

Hirsch, A. K. H., Buhler, E. & Lehn, J. M. Biodynamers: self-organization-driven formation of doubly dynamic proteoids. J. Am. Chem. Soc. 134, 4177–4183 (2012).

CASPubMedGoogle Scholar

Jawor-Baczynska, A., Sefcik, J. & Moore, B. D. 250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sites. Cryst. Growth Des. 13, 470–478 (2013).

CASGoogle Scholar

Dave, D. R. et al. Adaptive and space-filling peptide self-assembly upon drying. Preprint at https://doi.org/10.26434/chemrxiv-2024-cmwjx (2024).

Bera, S. et al. Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Rep. Phys. Sci. 2, 100391 (2021).

CASPubMedPubMed CentralGoogle Scholar

Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

PubMedGoogle Scholar

Baldwin, A. J. et al. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc. 133, 14160–14163 (2011).

CASPubMedGoogle Scholar

Noji, M. et al. Breakdown of supersaturation barrier links protein folding to amyloid formation. Commun. Biol. 4, 120 (2021).

CASPubMedPubMed CentralGoogle Scholar

Portugal Barron, D. & Guo, Z. The supersaturation perspective on the amyloid hypothesis. Chem. Sci. 15, 46–54 (2024).

CASGoogle Scholar

Louros, N., Schymkowitz, J. & Rousseau, F. Mechanisms and pathology of protein misfolding and aggregation. Nat. Rev. Mol. Cell Biol. 24, 912–933 (2023).

CASPubMedGoogle Scholar

Pappas, C. G. et al. Emergence of low-symmetry foldamers from single monomers. Nat. Chem. 12, 1180–1186 (2020).

CASPubMedGoogle Scholar

Duan, C. & Wang, R. A unified description of salt effects on the liquid–liquid phase separation of proteins. ACS Cent. Sci. 10, 460–468 (2024).

CASPubMedPubMed CentralGoogle Scholar

Ji, W. et al. Metal-ion modulated structural transformation of amyloid-like dipeptide supramolecular self-assembly. ACS Nano 13, 7300–7309 (2019).

CASPubMedPubMed CentralGoogle Scholar

Abul-Haija, Y. M., Scott, G. G., Sahoo, J. K., Tuttle, T. & Ulijn, R. V. Cooperative, ion-sensitive co-assembly of tripeptide hydrogels. Chem. Commun. 53, 9562–9565 (2017).

CASGoogle Scholar

Dawson, W. M. et al. Structural resolution of switchable states of a de novo peptide assembly. Nat. Commun. 12, 1530 (2021).

CASPubMedPubMed CentralGoogle Scholar

Rehm, T. H. & Schmuck, C. Ion-pair induced self-assembly in aqueous solvents. Chem. Soc. Rev. 39, 3597 (2010).

CASPubMedGoogle Scholar

von Gröning, M., de Feijter, I., Stuart, M. C. A., Voets, I. K. & Besenius, P. Tuning the aqueous self-assembly of multistimuli-responsive polyanionic peptide nanorods. J. Mater. Chem. B 1, 2008 (2013).

Google Scholar

Roy, S. et al. Dramatic specific‐ion effect in supramolecular hydrogels. Chem. Eur. J. 18, 11723–11731 (2012).

CASPubMedGoogle Scholar

Li, Z., Zhu, Y. & Matson, J. B. pH-responsive self-assembling peptide-based biomaterials: designs and applications. ACS Appl. Bio Mater. 5, 4635–4651 (2022).

CASGoogle Scholar

Shen, Z. et al. Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity. Biomater. Sci. 8, 2031–2039 (2020).

CASPubMedGoogle Scholar

Tan, Y. et al. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat. Chem. Biol. 11, 488–495 (2015).

CASPubMedGoogle Scholar

Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).

CASPubMedGoogle Scholar

Chang, H. et al. Short-sequence superadhesive peptides with topologically enhanced cation−π interactions. Chem. Mater. 33, 5168–5176 (2021).

CASGoogle Scholar

Paravastu, A. K., Leapman, R. D., Yau, W.-M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008).

CASPubMedPubMed CentralGoogle Scholar

Ostermeier, L., de Oliveira, G. A. P., Dzwolak, W., Silva, J. L. & Winter, R. Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophys. Chem. 268, 106506 (2021).

CASPubMedGoogle Scholar

Fändrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001).

PubMedGoogle Scholar

Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

CASPubMedGoogle Scholar

Close, W. et al. Physical basis of amyloid fibril polymorphism. Nat. Commun. 9, 699 (2018).

PubMedPubMed CentralGoogle Scholar

Wang, F. et al. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 4, 3217–3231 (2021).

CASPubMedPubMed CentralGoogle Scholar

Rüter, A. et al. Tube to ribbon transition in a self-assembling model peptide system. Phys. Chem. Chem. Phys. 22, 18320–18327 (2020).

PubMedGoogle Scholar

Merg, A. D. et al. Shape-shifting peptide nanomaterials: surface asymmetry enables pH-dependent formation and interconversion of collagen tubes and sheets. J. Am. Chem. Soc. 142, 19956–19968 (2020).

CASPubMedGoogle Scholar

Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 1, 111–119 (2015).

Google Scholar

Swann, P. A. et al. Nonspecific protease-catalyzed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Biopolymers 40, 617–625 (1996).

CASPubMedGoogle Scholar

Schmuck, C., Heil, M., Scheiber, J. & Baumann, K. Charge interactions do the job: a combined statistical and combinatorial approach to finding artificial receptors for binding tetrapeptides in water. Angew. Chem. Int. Ed. 44, 7208–7212 (2005).

CASGoogle Scholar

Schmuck, C. & Geiger, L. Efficient complexation of N-acetyl amino acid carboxylates in water by an artificial receptor: unexpected cooperativity in the binding of glutamate but not aspartate. J. Am. Chem. Soc. 127, 10486–10487 (2005).

CASPubMedGoogle Scholar

Lam, R. T. S. et al. Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 308, 667–669 (2005).

CASPubMedGoogle Scholar

Chen, C. et al. Design of multi-phase dynamic chemical networks. Nat. Chem. 9, 799–804 (2017).

CASPubMedGoogle Scholar

Rodrigues, A., Rocard, L. & Moumné, R. Peptide and peptidomimetic assemblies in dynamic combinatorial chemistry. ChemSystemsChemhttps://doi.org/10.1002/syst.202300011 (2023).

Liu, K. et al. Light-driven eco-evolutionary dynamics in a synthetic replicator system. Nat. Chem. 16, 79–88 (2024).

CASPubMedGoogle Scholar

Li, J., Nowak, P. & Otto, S. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. J. Am. Chem. Soc. 135, 9222–9239 (2013).

CASPubMedGoogle Scholar

Martin, C. et al. Water-based dynamic depsipeptide chemistry: building block recycling and oligomer distribution control using hydration–dehydration cycles. JACS Au 2, 1395–1404 (2022).

Google Scholar

Liu, B. et al. Complex molecules that fold like proteins can emerge spontaneously. J. Am. Chem. Soc. 141, 1685–1689 (2019).

CASPubMedGoogle Scholar

Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

CASPubMedGoogle Scholar

Eleveld, M. J. et al. Departure from randomness: evolution of self-replicators that can self-sort through steric zipper formation. Chemhttps://doi.org/10.1016/j.chempr.2024.11.012 (2024).

Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

CASPubMedGoogle Scholar

Abul-Haija, Y. M. & Ulijn, R. V. Sequence adaptive peptide-polysaccharide nanostructures by biocatalytic self-assembly. Biomacromolecules 16, 3473–3479 (2015).

CASPubMedGoogle Scholar

Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4, 19–24 (2009).

CASPubMedGoogle Scholar

Nalluri, S. K. M., Berdugo, C., Javid, N., Frederix, P. W. J. M. & Ulijn, R. V. Biocatalytic self‐assembly of supramolecular charge‐transfer nanostructures based on N‐type semiconductor‐appended peptides. Angew. Chem. Int. Ed. 53, 5882–5887 (2014).

CASGoogle Scholar

Berdugo, C. et al. Dynamic peptide library for the discovery of charge transfer hydrogels. ACS Appl. Mater. Interfaces 7, 25946–25954 (2015).

CASPubMedGoogle Scholar

Kassem, S., McPhee, S. A., Berisha, N. & Ulijn, R. V. Emergence of cooperative glucose-binding networks in adaptive peptide systems. J. Am. Chem. Soc. 145, 9800–9807 (2023).

CASPubMedGoogle Scholar

Jain, A. et al. Tractable molecular adaptation patterns in a designed complex peptide system. Chem 8, 1894–1905 (2022).

CASGoogle Scholar

Davis, A. M. & Teague, S. J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed. 38, 736–749 (1999).

CASGoogle Scholar

Zagiel, B. et al. Dynamic amino acid side‐chains grafting on folded peptide backbone. Chem. Eur. J. 28, e202200454 (2022).

CASPubMedGoogle Scholar

Kumar, M. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 10, 696–703 (2018).

CASPubMedGoogle Scholar

Lehn, J. M. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry. Top. Curr. Chem. 322, 1–32 (2012).

CASPubMedGoogle Scholar

Kaygisiz, K. & Ulijn, R. V. Can molecular systems learn? ChemSystemsChemhttps://doi.org/10.1002/syst.202400075 (2025).

Rha, A. K. et al. Electrostatic complementarity drives amyloid/nucleic acid co‐assembly. Angew. Chem. Int. Ed. 59, 358–363 (2020).

CASGoogle Scholar

Njirjak, M. et al. Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning. Nat. Mach. Intell. 6, 1487–1500 (2024).

Google Scholar

Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

CASPubMedGoogle Scholar

Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).

CASPubMedGoogle Scholar

van Teijlingen, A., Smith, M. C. & Tuttle, T. Short peptide self-assembly in the martini coarse-grain force field family. Acc. Chem. Res. 56, 644–654 (2023).

PubMedPubMed CentralGoogle Scholar

Syamala, P. P. N., Soberats, B., Görl, D., Gekle, S. & Würthner, F. Thermodynamic insights into the entropically driven self-assembly of amphiphilic dyes in water. Chem. Sci. 10, 9358–9366 (2019).

CASPubMedPubMed CentralGoogle Scholar

Schoenmakers, S. M. C. et al. Structure and dynamics of supramolecular polymers: wait and see. ACS Macro Lett. 11, 711–715 (2022).

CASPubMedPubMed CentralGoogle Scholar

Albertazzi, L. et al. Probing exchange pathways in one-dimensional aggregates with super-resolution microscopy. Science 344, 491–495 (2014).

CASPubMedGoogle Scholar

Ni, Q. Z. et al. Peptide and protein dynamics and low-temperature/DNP magic angle spinning NMR. J. Phys. Chem. B 121, 4997–5006 (2017).

CASPubMedPubMed CentralGoogle Scholar

Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808–813 (2018).

CASPubMedPubMed CentralGoogle Scholar

Zaslavsky, B. Y. & Uversky, V. N. In aqua veritas: the indispensable yet mostly ignored role of water in phase separation and membrane-less organelles. Biochemistry 57, 2437–2451 (2018).

CASPubMedGoogle Scholar

Rani, P. & Biswas, P. Diffusion of hydration water around intrinsically disordered proteins. J. Phys. Chem. B 119, 13262–13270 (2015).

CASPubMedGoogle Scholar

Mukherjee, S. & Schäfer, L. V. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain. Nat. Commun. 14, 5892 (2023).

CASPubMedPubMed CentralGoogle Scholar

Arya, S. & Mukhopadhyay, S. Ordered water within the collapsed globules of an amyloidogenic intrinsically disordered protein. J. Phys. Chem. B 118, 9191–9198 (2014).

CASPubMedGoogle Scholar

Ribeiro, S. S., Samanta, N., Ebbinghaus, S. & Marcos, J. C. The synergic effect of water and biomolecules in intracellular phase separation. Nat. Rev. Chem. https://doi.org/10.1038/s41570-019-0120-4 (2019).

Chang, R., Yuan, C., Zhou, P., Xing, R. & Yan, X. Peptide self-assembly: from ordered to disordered. Acc. Chem. Res. 57, 289–301 (2024).

CASPubMedGoogle Scholar

da Silva, R. M. P. et al. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres. Nat. Commun. 7, 11561 (2016).

PubMedPubMed CentralGoogle Scholar

Pavlović, R. Z., Egner, S. A., Palmer, L. C. & Stupp, S. I. Supramolecular polymers: dynamic assemblies of ‘dancing’ monomers. J. Polym. Sci. 61, 870–880 (2023).

Google Scholar

Piskorz, T. K., Perez-Chirinos, L., Qiao, B. & Sasselli, I. R. Tips and tricks in the modeling of supramolecular peptide assemblies. ACS Omega 9, 31254–31273 (2024).

CASPubMedPubMed CentralGoogle Scholar

Bochicchio, D., Salvalaglio, M. & Pavan, G. M. Into the dynamics of a supramolecular polymer at submolecular resolution. Nat. Commun. 8, 147 (2017).

PubMedPubMed CentralGoogle Scholar

Rodon-Fores, J. et al. A chemically fueled supramolecular glue for self-healing gels. Chem. Sci. 13, 11411–11421 (2022).

CASPubMedPubMed CentralGoogle Scholar

Mendes, A. C., Baran, E. T., Reis, R. L. & Azevedo, H. S. Self‐assembly in nature: using the principles of nature to create complex nanobiomaterials. WIREs Nanomed. Nanobiotechnol. 5, 582–612 (2013).

CASGoogle Scholar

Yan, X., Li, J. & Möhwald, H. Self‐assembly of hexagonal peptide microtubes and their optical waveguiding. Adv. Mater. 23, 2796–2801 (2011).

CASPubMedGoogle Scholar

Packwood, D. M., Han, P. & Hitosugi, T. Chemical and entropic control on the molecular self-assembly process. Nat. Commun. 8, 14463 (2017).

CASPubMedPubMed CentralGoogle Scholar

Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

CASPubMedGoogle Scholar

Roth, P. et al. Supramolecular assembly guided by photolytic redox cycling. Nat. Synth. https://doi.org/10.1038/s44160-023-00343-1 (2023).

Matern, J., Dorca, Y., Sánchez, L. & Fernández, G. Revising complex supramolecular polymerization under kinetic and thermodynamic control. Angew. Chem. Int. Ed. 58, 16730–16740 (2019).

CASGoogle Scholar

Debnath, S. et al. Tunable supramolecular gel properties by varying thermal history. Chem. Eur. J. 25, 7881–7887 (2019).

CASPubMedGoogle Scholar

Knowles, T. P. J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

CASPubMedGoogle Scholar

Hirst, A. R. et al. Biocatalytic induction of supramolecular order. Nat. Chem. 2, 1089–1094 (2010).

CASPubMedGoogle Scholar

Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & Van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

CASPubMedGoogle Scholar

Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).

CASGoogle Scholar

Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).

CASPubMedPubMed CentralGoogle Scholar

Debnath, S., Roy, S. & Ulijn, R. V. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. J. Am. Chem. Soc. 135, 16789–16792 (2013).

CASPubMedGoogle Scholar

Li, X. et al. Solvent modulated structural transition of self-assemblies formed by bola-form hexapeptide amphiphiles. J. Mol. Liq. 355, 118940 (2022).

CASGoogle Scholar

Levine, M. S. et al. Formation of peptide-based oligomers in dimethylsulfoxide: identifying the precursor of fibril formation. Soft Matter 16, 7860–7868 (2020).

CASPubMedGoogle Scholar

Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).

CASPubMedGoogle Scholar

Mehringer, J. et al. Hofmeister versus Neuberg: is ATP really a biological hydrotrope? Cell Rep. Phys. Sci. 2, 100343 (2021).

CASGoogle Scholar

Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).

CASPubMedGoogle Scholar

Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. https://doi.org/10.1039/c7cs00117g (2017).

Lehn, J.-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).

CASGoogle Scholar

Herrmann, A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem. Soc. Rev. https://doi.org/10.1039/c3cs60336a (2014).

Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).

CASPubMedGoogle Scholar

Lehn, J.-M. Towards complex matter: supramolecular chemistry and self-organization. Eur. Rev. 17, 263–280 (2009).

Google Scholar

Mao, X. & Kotov, N. Complexity, disorder, and functionality of nanoscale materials. MRS Bull. 49, 352–364 (2024).

Google Scholar

Davis, A. V., Yeh, R. M. & Raymond, K. N. Supramolecular assembly dynamics. Proc. Natl Acad. Sci. USA 99, 4793–4796 (2002).

CASPubMedPubMed CentralGoogle Scholar

Download references

Author information

Authors and Affiliations

Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, NY, USA

Kübra Kaygisiz, Deborah Sementa, Vignesh Athiyarath, Xi Chen & Rein V. Ulijn

Department of Chemical Engineering, The City College of New York, New York, NY, USA

Xi Chen

PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA

Xi Chen & Rein V. Ulijn

PhD Program in Physics, The Graduate Center of the City University of New York, New York, NY, USA

Xi Chen

Department of Chemistry, Hunter College, City University of New York, New York, NY, USA

Rein V. Ulijn

PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA

Rein V. Ulijn

Authors

Kübra Kaygisiz

View author publications

You can also search for this author in PubMedGoogle Scholar

2. Deborah Sementa

View author publications

You can also search for this author in PubMedGoogle Scholar

3. Vignesh Athiyarath

View author publications

You can also search for this author in PubMedGoogle Scholar

4. Xi Chen

View author publications

You can also search for this author in PubMedGoogle Scholar

5. Rein V. Ulijn

View author publications

You can also search for this author in PubMedGoogle Scholar

Contributions

K.K., D.S., V.A. and R.V.U. did the literature research and wrote the original manuscript. K.K. and R.V.U. conceptualized the manuscript. X.C. and R.V.U. revised, supervised and provided the funding resources. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Rein V. Ulijn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Tao Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Assembly dynamics

Rate of formation of a supramolecular structure, governed by interaction strength and range of involved intermolecular interaction types.

Environmental conditions

Factors such as pH, ionic strength, co-solutes, temperature and mechanical forces.

Exchange dynamics

Rate at which monomers in an assembled structure exchange with their environment, such as a solution.

Interassembly dynamics

Rate of interactions between assembled structures.

Internal dynamics

Reversible interactions between peptides that allow for rearrangement within an assembled structure.

Monomer dynamics

Flexibility of the peptide’s backbone to populate different dihedral angles.

Order and disorder

The regularity and irregularity of monomer arrangement in a self-assembled structure.

Out-of-equilibrium

A state in which a system is not in a thermodynamic equilibrium.

Pathway complexity

The variety of kinetic and out-of-equilibrium routes a monomer can take within a free-energy landscape to access different supramolecular morphologies.

Peptide sequence

The specific order and composition of amino acids in a peptide.

Polymorphism

The observation of multiple morphologies for the same type of molecule.

Sequence context

The combined influence of environmental conditions and sequence on the peptide self-assembly process and outcomes.

Supramolecular dynamics

The reversible changes in the structure of the assembly through movements and exchanges of monomers over time.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaygisiz, K., Sementa, D., Athiyarath, V. et al. Context dependence in assembly code for supramolecular peptide materials and systems. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00782-6

Download citation

Accepted:31 January 2025

Published:13 March 2025

DOI:https://doi.org/10.1038/s41578-025-00782-6

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page