nature.com

Palaeogenomic inference of biodiversity dynamics across Quaternary timescales

Abstract

Biodiversity is essential for the resilience and stability of life, yet it is highly dynamic and has continuously evolved throughout Earth’s history. The biodiversity concept encompasses three hierarchical levels of equal importance to fundamental ecological processes: diversity at the ecosystem, species and genetic levels. The current biodiversity crisis calls for an urgent need to understand the causes and consequences of widespread diversity losses at all three levels. Breakthroughs in palaeogenomics have increased the ecological and temporal scales on which we can use genomic information to study past biodiversity, reaching as far back as the Early Pleistocene. In this Review, we explore the possibilities and limitations of using palaeogenomics for studying all aspects of biodiversity. We explore how incorporating palaeogenomics into biodiversity research can provide clues about ecosystem composition, trophic interactions, species distributions, adaptation, evolution and extinction through time, in response to natural processes and as a consequence of human impact. We report how palaeogenomics can be applied to address a wide range of topics across all three hierarchical levels of biodiversity, and we show how advances within the field are making palaeogenomics an invaluable tool for understanding past and present declines in biodiversity, and in helping to predict future losses.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Temperature trends and key biodiversity events from the Quaternary accessible using palaeogenomics.

Fig. 2: Palaeogenomic insights across the biodiversity hierarchy.

Fig. 3: Simplified overview of common ancient DNA methods for investigating biodiversity.

Fig. 4: Challenges of studying ecosystem biodiversity with ancient DNA.

Fig. 5: Ancient environmental DNA records of human disturbance in sediment cores from Lake Ljøgottjern, Norway.

Fig. 6: Ancient DNA reveals genetic turnover in the collared lemming during the Late Quaternary.

References

Dalén, L., Heintzman, P. D., Kapp, J. D. & Shapiro, B. Deep-time paleogenomics and the limits of DNA survival. Science 382, 48–53 (2023).

ArticleGoogle Scholar

van der Valk, T. et al. Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591, 265–269 (2021).

ArticleGoogle Scholar

Kjær, K. H. et al. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature 612, 283–291 (2022).

ArticleGoogle Scholar

Green, E. J. & Speller, C. F. Novel substrates as sources of ancient DNA: prospects and hurdles. Genes 8, 180 (2017).

ArticleGoogle Scholar

Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. Sampling and extraction of ancient DNA from sediments. Methods Mol. Biol. 1963, 31–44 (2019).

ArticleCASGoogle Scholar

Wagner, S. et al. High-throughput DNA sequencing of ancient wood. Mol. Ecol. 27, 1138–1154 (2018).

ArticleCASGoogle Scholar

Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

ArticleGoogle Scholar

Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

ArticleCASGoogle Scholar

Dasgupta, P. S. & Ehrlich, P. R. in Biological Extinction: New Perspectives (eds Dasgupta, P., Raven, P. & McIvor, A.) 262–284 (Cambridge Univ. Press, 2019).

Cowie, R. H., Bouchet, P. & Fontaine, B. The sixth mass extinction: fact, fiction or speculation? Biol. Rev. Camb. Phil. Soc. 97, 640–663 (2022).

ArticleGoogle Scholar

Clarke, C. L. et al. Steppe–tundra composition and deglacial floristic turnover in interior Alaska revealed by sedimentary ancient DNA (sedaDNA). Quat. Sci. Rev. 334, 108672 (2024).

ArticleGoogle Scholar

Voldstad, L. H. et al. A complete Holocene lake sediment ancient DNA record reveals long-standing high Arctic plant diversity hotspot in northern Svalbard. Quat. Sci. Rev. 234, 106207 (2020).

ArticleGoogle Scholar

Dehasque, M. et al. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 187, 3531–3540.e13 (2024).

ArticleCASGoogle Scholar

Díez-Del-Molino, D. et al. Genomics of adaptive evolution in the woolly mammoth. Curr. Biol. 33, 1753–1764.e4 (2023).

ArticleGoogle Scholar

McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 289–297 (2004).

ArticleGoogle Scholar

Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

ArticleCASGoogle Scholar

Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).

Google Scholar

Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).

ArticleCASGoogle Scholar

Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prisms Extinct. 2, e5 (2024).

ArticleGoogle Scholar

Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).

ArticleGoogle Scholar

Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. Camb. Phil. Soc. 93, 845–862 (2018).

ArticleGoogle Scholar

IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).

Exposito-Alonso, M. et al. Genetic diversity loss in the Anthropocene. Science 377, 1431–1435 (2022).

ArticleCASGoogle Scholar

Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).

ArticleGoogle Scholar

Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. & Wilson, A. C. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284 (1984).

ArticleCASGoogle Scholar

Cooper, R. A. et al. Completeness of the fossil record: estimating losses due to small body size. Geology 34, 241 (2006).

ArticleGoogle Scholar

Smith, A. B. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Phil. Trans. R. Soc. Lond. B 356, 351–367 (2001).

ArticleCASGoogle Scholar

Thomas, R. H., Schaffner, W., Wilson, A. C. & Pääbo, S. DNA phylogeny of the extinct marsupial wolf. Nature 340, 465–467 (1989).

ArticleCASGoogle Scholar

Cooper, A. et al. Independent origins of New Zealand moas and kiwis. Proc. Natl Acad. Sci. USA 89, 8741–8744 (1992).

ArticleCASGoogle Scholar

Wayne, R. K., Leonard, J. A. & Cooper, A. Full of sound and fury: history of ancient DNA. Annu. Rev. Ecol. Syst. 30, 457–477 (1999).

ArticleGoogle Scholar

Knapp, M. & Hofreiter, M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes 1, 227–243 (2010).

ArticleCASGoogle Scholar

Dalal, V., Pasupuleti, N., Chaubey, G., Rai, N. & Shinde, V. Advancements and challenges in ancient DNA research: bridging the global North–South divide. Genes 14, 479 (2023).

ArticleCASGoogle Scholar

Breed, M. F. et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20, 615–628 (2019).

ArticleCASGoogle Scholar

Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).

ArticleCASGoogle Scholar

Hogg, C. J. Translating genomic advances into biodiversity conservation. Nat. Rev. Genet. 25, 362–373 (2024).

ArticleCASGoogle Scholar

Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012).

ArticleCASGoogle Scholar

Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).

ArticleCASGoogle Scholar

Mullin, V. E. et al. First large‐scale quantification study of DNA preservation in insects from natural history collections using genome‐wide sequencing. Methods Ecol. Evol. 14, 360–371 (2023).

ArticleGoogle Scholar

Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR Sci. Technol. Archaeol. Res. 3, 1–14 (2017).

Google Scholar

Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Persp. Biol. 5, a012567 (2013).

Google Scholar

Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

ArticleCASGoogle Scholar

Epp, L. S., Stoof, K. R., Trauth, M. H. & Tiedemann, R. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. J. Paleolimnol. 43, 939–954 (2010).

ArticleGoogle Scholar

Stoof-Leichsenring, K. R., Epp, L. S., Trauth, M. H. & Tiedemann, R. Hidden diversity in diatoms of Kenyan Lake Naivasha: a genetic approach detects temporal variation. Mol. Ecol. 21, 1918–1930 (2012).

ArticleCASGoogle Scholar

Dommain, R. et al. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: a 2200-year-long metagenomic record from Bwindi Impenetrable Forest, Uganda. Front. Ecol. Evol. 8, 218 (2020).

ArticleGoogle Scholar

Epp, L. S. A global perspective for biodiversity history with ancient environmental DNA. Mol. Ecol. 28, 2456–2458 (2019).

ArticleGoogle Scholar

Pedersen, M. W. et al. Ancient and modern environmental DNA. Phil. Trans. R. Soc. Lond. B 370, 20130383 (2015).

ArticleGoogle Scholar

Schlumbaum, A., Tensen, M. & Jaenicke-Després, V. Ancient plant DNA in archaeobotany. Veg. Hist. Archaeobot. 17, 233–244 (2008).

ArticleGoogle Scholar

Murchie, T. J. et al. Pleistocene mitogenomes reconstructed from the environmental DNA of permafrost sediments. Curr. Biol. 32, 851–860.e7 (2022).

ArticleCASGoogle Scholar

Schulte, L. et al. Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA. Commun. Biol. 5, 570 (2022).

ArticleCASGoogle Scholar

Heintzman, P. D. et al. In Tracking Environmental Change Using Lake Sediments (eds Capo, E., Barouillet, C. & Smol, J. P.) 53–84 (Springer International, 2023).

Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).

ArticleCASGoogle Scholar

Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).

ArticleCASGoogle Scholar

Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA: environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

ArticleCASGoogle Scholar

Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118 (2010).

ArticleCASGoogle Scholar

Murchie, T. J. et al. Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nat. Commun. 12, 7120 (2021).

ArticleCASGoogle Scholar

Schulte, L. et al. Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest. Mol. Ecol. Resour. 21, 801–815 (2021).

ArticleCASGoogle Scholar

Cribdon, B., Ware, R., Smith, O., Gaffney, V. & Allaby, R. G. PIA: more accurate taxonomic assignment of metagenomic data demonstrated on sedaDNA from the North Sea. Front. Ecol. Evol. 8, 506594 (2020).

ArticleGoogle Scholar

González Fortes, G. & Paijmans, J. L. A. Whole-genome capture of ancient DNA using homemade baits. Methods Mol. Biol. 1963, 93–105 (2019).

ArticleGoogle Scholar

Soares, A. E. R. Hybridization capture of ancient DNA using RNA baits. Methods Mol. Biol. 1963, 121–128 (2019).

ArticleCASGoogle Scholar

Poinar, H. N. et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394 (2006).

ArticleCASGoogle Scholar

Carpenter, M. L. et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864 (2013).

ArticleCASGoogle Scholar

Nistelberger, H. M., Smith, O., Wales, N., Star, B. & Boessenkool, S. The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains. Sci. Rep. 6, 37347 (2016).

ArticleCASGoogle Scholar

Bunce, M. et al. Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425, 172–175 (2003).

ArticleCASGoogle Scholar

Huynen, L., Millar, C. D., Scofield, R. P. & Lambert, D. M. Nuclear DNA sequences detect species limits in ancient moa. Nature 425, 175–178 (2003).

ArticleCASGoogle Scholar

da Fonseca, R. R. et al. The origin and evolution of maize in the Southwestern United States. Nat. Plants. 1, 14003 (2015).

ArticleGoogle Scholar

Park, S. D. E. et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 16, 234 (2015).

ArticleGoogle Scholar

Wang, M.-S. et al. A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears. Nat. Ecol. Evol. 6, 936–944 (2022).

ArticleGoogle Scholar

Casas-Marce, M. et al. Spatiotemporal dynamics of genetic variation in the iberian lynx along its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol 34, 2893–2907 (2017).

ArticleCASGoogle Scholar

Kellner, F. L. et al. A palaeogenomic investigation of overharvest implications in an endemic wild reindeer subspecies. Mol. Ecol. 33, e17274 (2024).

ArticleGoogle Scholar

Palkopoulou, E. et al. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings. Glob. Chang. Biol. 22, 1710–1721 (2016).

ArticleGoogle Scholar

Baca, M. et al. Ancient DNA reveals interstadials as a driver of common vole population dynamics during the last glacial period. J. Biogeogr. 50, 183–196 (2023).

ArticleGoogle Scholar

Parducci, L., Suyama, Y., Lascoux, M. & Bennett, K. D. Ancient DNA from pollen: a genetic record of population history in Scots pine. Mol. Ecol. 14, 2873–2882 (2005).

ArticleCASGoogle Scholar

Ehrlich, P. R., Kremen, C. & Ehrlich, A. H. in Encyclopedia of Biodiversity 2nd edn (ed. Levin, S. A.) 153–161 (Elsevier, 2013).

Berends, C. J., Köhler, P., Lourens, L. J. & van de Wal, R. S. W. On the cause of the mid‐Pleistocene transition. Rev. Geophys. 59, e2020RG000727 (2021).

ArticleGoogle Scholar

Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114 (2007).

ArticleCASGoogle Scholar

Crump, S. E. et al. Ancient plant DNA reveals High Arctic greening during the Last Interglacial. Proc. Natl Acad. Sci. USA 118, e2019069118 (2021).

ArticleCASGoogle Scholar

Courtin, J. et al. Pleistocene glacial and interglacial ecosystems inferred from ancient DNA analyses of permafrost sediments from Batagay megaslump, East Siberia. Environ. DNA. 4, 1265–1283 (2022).

ArticleCASGoogle Scholar

Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. IPCChttps://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf (2023).

Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016).

ArticleGoogle Scholar

Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).

ArticleGoogle Scholar

Stivrins, N. et al. Biotic turnover rates during the Pleistocene–Holocene transition. Quat. Sci. Rev. 151, 100–110 (2016).

ArticleGoogle Scholar

Wang, Y. et al. Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 600, 86–92 (2021).

ArticleCASGoogle Scholar

Jeffers, E. S. et al. Plant controls on Late Quaternary whole ecosystem structure and function. Ecol. Lett. 21, 814–825 (2018).

ArticleGoogle Scholar

Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).

ArticleCASGoogle Scholar

Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).

ArticleCASGoogle Scholar

Alsos, I. G. et al. Postglacial species arrival and diversity buildup of northern ecosystems took millennia. Sci. Adv. 8, eabo7434 (2022).

ArticleCASGoogle Scholar

Boilard, A. et al. Ancient DNA and osteological analyses of a unique paleo-archive reveal Early Holocene faunal expansion into the Scandinavian Arctic. Sci. Adv. 10, eadk3032 (2024).

ArticleCASGoogle Scholar

Clarke, C. L. et al. Persistence of Arctic–alpine flora during 24,000 years of environmental change in the polar Urals. Sci. Rep. 9, 19613 (2019).

ArticleCASGoogle Scholar

Garcés-Pastor, S. et al. High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change. Nat. Commun. 13, 6559 (2022).

ArticleGoogle Scholar

Pansu, J. et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol. Ecol. 24, 1485–1498 (2015).

ArticleGoogle Scholar

ter Schure, A. T. M. et al. Anthropogenic and environmental drivers of vegetation change in southeastern Norway during the Holocene. Quat. Sci. Rev. 270, 107175 (2021).

ArticleGoogle Scholar

Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

ArticleCASGoogle Scholar

Boessenkool, S. et al. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conserv. Biol. 28, 446–455 (2014).

ArticleGoogle Scholar

Jia, W. et al. Preservation of sedimentary plant DNA is related to lake water chemistry. Environ. DNA 4, 425–439 (2022).

ArticleCASGoogle Scholar

Isbell, F. et al. Expert perspectives on global biodiversity loss and its drivers and impacts on people. Front. Ecol. Environ. 21, 94–103 (2023).

ArticleGoogle Scholar

Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).

ArticleGoogle Scholar

Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).

ArticleCASGoogle Scholar

Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

ArticleCASGoogle Scholar

Turvey, S. T. & Crees, J. J. Extinction in the Anthropocene. Curr. Biol. 29, R982–R986 (2019).

ArticleCASGoogle Scholar

Capo, E. et al. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environ. Microbiol. 19, 2873–2892 (2017).

ArticleCASGoogle Scholar

Li, F., Zhang, X., Xie, Y. & Wang, J. Sedimentary DNA reveals over 150 years of ecosystem change by human activities in Lake Chao, China. Environ. Int. 133, 105214 (2019).

ArticleCASGoogle Scholar

Ibrahim, A. et al. Anthropogenic impact on the historical phytoplankton community of lake constance reconstructed by multimarker analysis of sediment-core environmental DNA. Mol. Ecol. 30, 3040–3056 (2021).

ArticleCASGoogle Scholar

Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

ArticleCASGoogle Scholar

Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

ArticleCASGoogle Scholar

Barouillet, C. et al. Investigating the effects of anthropogenic stressors on lake biota using sedimentary DNA. Freshw. Biol. 68, 1799–1817 (2022).

ArticleGoogle Scholar

Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).

ArticleGoogle Scholar

Barouillet, C. et al. Paleoreconstructions of ciliate communities reveal long-term ecological changes in temperate lakes. Sci. Rep. 12, 7899 (2022).

ArticleCASGoogle Scholar

Armbrecht, L. et al. Ancient marine sediment DNA reveals diatom transition in Antarctica. Nat. Commun. 13, 5787 (2022).

ArticleCASGoogle Scholar

Bagousse-Pinguet, Y. L. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).

ArticleGoogle Scholar

Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

ArticleGoogle Scholar

Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

ArticleCASGoogle Scholar

B-Béres, V. et al. Ecosystem services provided by freshwater and marine diatoms. Hydrobiologia 850, 2707–2733 (2023).

ArticleGoogle Scholar

Murray, D. C. et al. Scrapheap challenge: a novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Sci. Rep. 3, 3371 (2013).

ArticleGoogle Scholar

Woods, R., Barnes, I., Brace, S. & Turvey, S. T. Ancient DNA suggests single colonization and within-archipelago diversification of Caribbean caviomorph rodents. Mol. Biol. Evol. 38, 84–95 (2021).

ArticleCASGoogle Scholar

Dalén, L. et al. Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox. Proc. Natl Acad. Sci. USA 104, 6726–6729 (2007).

ArticleGoogle Scholar

Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1677 (2013).

ArticleGoogle Scholar

Meiri, M., Lister, A., Kosintsev, P., Zazula, G. & Barnes, I. Population dynamics and range shifts of moose (Alces alces) during the Late Quaternary. J. Biogeogr. 47, 2223–2234 (2020).

ArticleGoogle Scholar

Wang, Y. et al. Author Correction: Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 610, E5 (2022).

ArticleCASGoogle Scholar

Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).

ArticleCASGoogle Scholar

Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).

ArticleCASGoogle Scholar

Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

ArticleGoogle Scholar

White, L. C., Mitchell, K. J. & Austin, J. J. Ancient mitochondrial genomes reveal the demographic history and phylogeography of the extinct, enigmatic thylacine (Thylacinus cynocephalus). J. Biogeogr. 45, 1–13 (2018).

ArticleGoogle Scholar

Murray, G. G. R. et al. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358, 951–954 (2017).

ArticleCASGoogle Scholar

Thomas, J. E. et al. Demographic reconstruction from ancient DNA supports rapid extinction of the great auk. eLife 8, e47509 (2019).

ArticleCASGoogle Scholar

Sharko, F. S. et al. Steller’s sea cow genome suggests this species began going extinct before the arrival of Paleolithic humans. Nat. Commun. 12, 2215 (2021).

ArticleCASGoogle Scholar

Yan, D. et al. Sedimentary DNA reveals phytoplankton diversity loss in a deep maar lake during the Anthropocene. Limnol. Oceanogr. 69, 1299–1315 (2024).

ArticleCASGoogle Scholar

Schmidt, A. et al. Decoding the Baltic Sea’s past and present: a simple molecular index for ecosystem assessment. Ecol. Indic. 166, 112494 (2024).

ArticleCASGoogle Scholar

Siano, R. et al. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr. Biol. 31, 2682–2689.e7 (2021).

ArticleCASGoogle Scholar

Shaw, J. L. A., Weyrich, L. S., Hallegraeff, G. & Cooper, A. Retrospective eDNA assessment of potentially harmful algae in historical ship ballast tank and marine port sediments. Mol. Ecol. 28, 2476–2485 (2019).

ArticleCASGoogle Scholar

Ficetola, G. F. et al. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Sci. Adv. 4, eaar4292 (2018).

ArticleGoogle Scholar

Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife — threats to biodiversity and human health. Science 287, 443–449 (2000).

ArticleCASGoogle Scholar

Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).

ArticleCASGoogle Scholar

Sims, D., Sudbery, I., Ilott, N. E., Heger, A. & Ponting, C. P. Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121–132 (2014).

ArticleCASGoogle Scholar

Depaulis, F., Orlando, L. & Hänni, C. Using classical population genetics tools with heterochroneous data: time matters! PLoS ONE 4, e5541 (2009).

ArticleGoogle Scholar

Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).

ArticleCASGoogle Scholar

Barlow, A. et al. Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears. Curr. Biol. 31, 1771–1779.e7 (2021).

ArticleCASGoogle Scholar

Lord, E. et al. Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol. Evol. 22, 126 (2022).

ArticleGoogle Scholar

Baca, M. et al. Ancient DNA of narrow-headed vole reveal common features of the Late Pleistocene population dynamics in cold-adapted small mammals. Proc. Biol. Sci. 290, 20222238 (2023).

CASGoogle Scholar

Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 29, 1596–1610 (2020).

ArticleGoogle Scholar

Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).

ArticleCASGoogle Scholar

Marr, M. M., Brace, S., Schreve, D. C. & Barnes, I. Identifying source populations for the reintroduction of the Eurasian beaver, Castor fiber L. 1758, into Britain: evidence from ancient DNA. Sci. Rep. 8, 2708 (2018).

ArticleGoogle Scholar

Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395–1400 (2015).

ArticleCASGoogle Scholar

Lord, E. et al. Pre-extinction demographic stability and genomic signatures of adaptation in the woolly rhinoceros. Curr. Biol. 30, 3871–3879.e7 (2020).

ArticleCASGoogle Scholar

von Seth, J. et al. Genomic insights into the conservation status of the world’s last remaining Sumatran rhinoceros populations. Nat. Commun. 12, 2393 (2021).

ArticleGoogle Scholar

van der Valk, T., Díez-Del-Molino, D., Marques-Bonet, T., Guschanski, K. & Dalén, L. Historical genomes reveal the genomic consequences of recent population decline in Eastern Gorillas. Curr. Biol. 29, 165–170.e6 (2019).

ArticleGoogle Scholar

Díez-del-Molino, D., Sánchez-Barreiro, F., Barnes, I., Gilbert, M. T. P. & Dalén, L. Quantifying temporal genomic erosion in endangered species. Trends Ecol. Evol. 33, 176–185 (2018).

ArticleGoogle Scholar

Duncan, R. P., Boyer, A. G. & Blackburn, T. M. Magnitude and variation of prehistoric bird extinctions in the Pacific. Proc. Natl Acad. Sci. USA 110, 6436–6441 (2013).

ArticleCASGoogle Scholar

Wood, J. R. et al. Island extinctions: processes, patterns, and potential for ecosystem restoration. Environ. Conserv. 44, 348–358 (2017).

ArticleGoogle Scholar

Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).

Google Scholar

Roycroft, E. et al. Museum genomics reveals the rapid decline and extinction of Australian rodents since European settlement. Proc. Natl Acad. Sci. USA 118, e2021390118 (2021).

ArticleCASGoogle Scholar

Mathur, S. & DeWoody, J. A. Genetic load has potential in large populations but is realized in small inbred populations. Evol. Appl. 14, 1540–1557 (2021).

ArticleCASGoogle Scholar

Kleinman-Ruiz, D. et al. Purging of deleterious burden in the endangered Iberian lynx. Proc. Natl Acad. Sci. USA 119, e2110614119 (2022).

ArticleCASGoogle Scholar

Grossen, C., Guillaume, F., Keller, L. F. & Croll, D. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11, 1001 (2020).

ArticleCASGoogle Scholar

Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).

ArticleCASGoogle Scholar

Dussex, N. et al. Population genomics of the critically endangered kākāpō. Cell Genom. 1, 100002 (2021).

ArticleCASGoogle Scholar

Dussex, N., Morales, H. E., Grossen, C., Dalén, L. & van Oosterhout, C. Purging and accumulation of genetic load in conservation. Trends Ecol. Evol. 38, 961–969 (2023).

ArticleGoogle Scholar

Feng, S. et al. The genomic footprints of the fall and recovery of the crested ibis. Curr. Biol. 29, 340–349.e7 (2019).

ArticleCASGoogle Scholar

Fordham, D. A., Brook, B. W., Moritz, C. & Nogués-Bravo, D. Better forecasts of range dynamics using genetic data. Trends Ecol. Evol. 29, 436–443 (2014).

ArticleGoogle Scholar

Prost, S. et al. Losing ground: past history and future fate of Arctic small mammals in a changing climate. Glob. Change Biol. 19, 1854–1864 (2013).

ArticleGoogle Scholar

Eastwood, N. et al. The Time Machine framework: monitoring and prediction of biodiversity loss. Trends Ecol. Evol. 37, 138–146 (2022).

ArticleGoogle Scholar

Hatton, I. A., Mazzarisi, O., Altieri, A. & Smerlak, M. Diversity begets stability: sublinear growth and competitive coexistence across ecosystems. Science 383, eadg8488 (2024).

ArticleCASGoogle Scholar

Nwosu, E. C. et al. Early human impact on lake cyanobacteria revealed by a Holocene record of sedimentary ancient DNA. Commun. Biol. 6, 72 (2023).

ArticleGoogle Scholar

Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

ArticleCASGoogle Scholar

Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

ArticleCASGoogle Scholar

Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017187 (2012).

Lisiecki, L. E. & Raymo, M. E. A. Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanographyhttps://doi.org/10.1029/2004PA001071 (2005).

IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).

ArticleCASGoogle Scholar

Ter Schure, A. T. M. et al. Sedimentary ancient DNA metabarcoding as a tool for assessing prehistoric plant use at the Upper Paleolithic cave site Aghitu-3, Armenia. J. Hum. Evol. 172, 103258 (2022).

ArticleGoogle Scholar

Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).

ArticleCASGoogle Scholar

Download references

Acknowledgements

S. Boessenkool acknowledges support from the Research Council of Norway (grant 314464). The authors thank S. Nylin and K. Norén, as well as the students in course BL7075 at Stockholm University for providing feedback on earlier versions of the manuscript.

Author information

Authors and Affiliations

Centre for Palaeogenetics, Stockholm, Sweden

Amanda Lindahl, Peter D. Heintzman, Love Dalén & David Díez del Molino

Department of Zoology, Stockholm University, Stockholm, Sweden

Amanda Lindahl, Love Dalén & David Díez del Molino

Department of Biology, University of Konstanz, Konstanz, Germany

Laura S. Epp

Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway

Sanne Boessenkool

Centre for Ancient Environmental Genomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark

Mikkel Winther Pedersen

Natural History Museum, London, UK

Selina Brace

Department of Geological Sciences, Stockholm University, Stockholm, Sweden

Peter D. Heintzman

Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden

Love Dalén & David Díez del Molino

Authors

Amanda Lindahl

View author publications

You can also search for this author in PubMedGoogle Scholar

2. Laura S. Epp

View author publications

You can also search for this author in PubMedGoogle Scholar

3. Sanne Boessenkool

View author publications

You can also search for this author in PubMedGoogle Scholar

4. Mikkel Winther Pedersen

View author publications

You can also search for this author in PubMedGoogle Scholar

5. Selina Brace

View author publications

You can also search for this author in PubMedGoogle Scholar

6. Peter D. Heintzman

View author publications

You can also search for this author in PubMedGoogle Scholar

7. Love Dalén

View author publications

You can also search for this author in PubMedGoogle Scholar

8. David Díez del Molino

View author publications

You can also search for this author in PubMedGoogle Scholar

Contributions

L.D., A.L., D.D.d.M. and P.D.H. conceived the review and A.L. wrote the first draft. All authors contributed to discussion of the content, conceptualized the figures, substantially reviewed and edited the manuscript before submission, and approved the final manuscript.

Corresponding authors

Correspondence to Amanda Lindahl or David Díez del Molino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Tyler Murchie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Convention on Biological Diversity: http://www.cbd.int/

Earth BioGenome Project: https://www.earthbiogenome.org/

The Intergovernmental Panel on Climate Change: https://www.ipcc.ch/

Glossary

Baits

Baits or probes for target enrichment are made of short biotinylated single-stranded DNA or RNA molecules that bind to DNA fragments from specific genomic regions, which are then separated from the remaining non-target DNA molecules.

Bulk bone

A collection of morphologically unidentifiable bone fragments collected from a single stratigraphic layer in a cave, for example.

Endogenous DNA

The fraction of DNA in a sample that derives from the organism(s) under study.

Exogenous DNA

The fraction of DNA in a sample that derives from organisms other than the one(s) under study; this can be introduced by the environment in which the sample is preserved, during handling of the sample, or by laboratory preparations.

Glacial periods

Intervals of time characterized by cold temperatures, the formation of extensive continental ice sheets and reduced sea levels.

Glacial refugia

Geographical areas with warmer climates that provide suitable living conditions for warm-adapted species during glacial periods.

Interglacial periods

Intervals of time between glacial periods characterized by warm temperatures, retreated ice sheets and sea levels comparable to those of today.

Palaeogenomics

The genome-wide analysis of DNA from ancient organisms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindahl, A., Epp, L.S., Boessenkool, S. et al. Palaeogenomic inference of biodiversity dynamics across Quaternary timescales. Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00033-0

Download citation

Accepted:20 February 2025

Published:18 March 2025

DOI:https://doi.org/10.1038/s44358-025-00033-0

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page