Abstract
Biodiversity is essential for the resilience and stability of life, yet it is highly dynamic and has continuously evolved throughout Earth’s history. The biodiversity concept encompasses three hierarchical levels of equal importance to fundamental ecological processes: diversity at the ecosystem, species and genetic levels. The current biodiversity crisis calls for an urgent need to understand the causes and consequences of widespread diversity losses at all three levels. Breakthroughs in palaeogenomics have increased the ecological and temporal scales on which we can use genomic information to study past biodiversity, reaching as far back as the Early Pleistocene. In this Review, we explore the possibilities and limitations of using palaeogenomics for studying all aspects of biodiversity. We explore how incorporating palaeogenomics into biodiversity research can provide clues about ecosystem composition, trophic interactions, species distributions, adaptation, evolution and extinction through time, in response to natural processes and as a consequence of human impact. We report how palaeogenomics can be applied to address a wide range of topics across all three hierarchical levels of biodiversity, and we show how advances within the field are making palaeogenomics an invaluable tool for understanding past and present declines in biodiversity, and in helping to predict future losses.
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Change institution
Buy or subscribe
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Temperature trends and key biodiversity events from the Quaternary accessible using palaeogenomics.
Fig. 2: Palaeogenomic insights across the biodiversity hierarchy.
Fig. 3: Simplified overview of common ancient DNA methods for investigating biodiversity.
Fig. 4: Challenges of studying ecosystem biodiversity with ancient DNA.
Fig. 5: Ancient environmental DNA records of human disturbance in sediment cores from Lake Ljøgottjern, Norway.
Fig. 6: Ancient DNA reveals genetic turnover in the collared lemming during the Late Quaternary.
References
Dalén, L., Heintzman, P. D., Kapp, J. D. & Shapiro, B. Deep-time paleogenomics and the limits of DNA survival. Science 382, 48–53 (2023).
ArticleGoogle Scholar
van der Valk, T. et al. Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591, 265–269 (2021).
ArticleGoogle Scholar
Kjær, K. H. et al. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature 612, 283–291 (2022).
ArticleGoogle Scholar
Green, E. J. & Speller, C. F. Novel substrates as sources of ancient DNA: prospects and hurdles. Genes 8, 180 (2017).
ArticleGoogle Scholar
Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. Sampling and extraction of ancient DNA from sediments. Methods Mol. Biol. 1963, 31–44 (2019).
ArticleCASGoogle Scholar
Wagner, S. et al. High-throughput DNA sequencing of ancient wood. Mol. Ecol. 27, 1138–1154 (2018).
ArticleCASGoogle Scholar
Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
ArticleGoogle Scholar
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
ArticleCASGoogle Scholar
Dasgupta, P. S. & Ehrlich, P. R. in Biological Extinction: New Perspectives (eds Dasgupta, P., Raven, P. & McIvor, A.) 262–284 (Cambridge Univ. Press, 2019).
Cowie, R. H., Bouchet, P. & Fontaine, B. The sixth mass extinction: fact, fiction or speculation? Biol. Rev. Camb. Phil. Soc. 97, 640–663 (2022).
ArticleGoogle Scholar
Clarke, C. L. et al. Steppe–tundra composition and deglacial floristic turnover in interior Alaska revealed by sedimentary ancient DNA (sedaDNA). Quat. Sci. Rev. 334, 108672 (2024).
ArticleGoogle Scholar
Voldstad, L. H. et al. A complete Holocene lake sediment ancient DNA record reveals long-standing high Arctic plant diversity hotspot in northern Svalbard. Quat. Sci. Rev. 234, 106207 (2020).
ArticleGoogle Scholar
Dehasque, M. et al. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 187, 3531–3540.e13 (2024).
ArticleCASGoogle Scholar
Díez-Del-Molino, D. et al. Genomics of adaptive evolution in the woolly mammoth. Curr. Biol. 33, 1753–1764.e4 (2023).
ArticleGoogle Scholar
McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 289–297 (2004).
ArticleGoogle Scholar
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
ArticleCASGoogle Scholar
Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).
Google Scholar
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
ArticleCASGoogle Scholar
Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prisms Extinct. 2, e5 (2024).
ArticleGoogle Scholar
Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).
ArticleGoogle Scholar
Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. Camb. Phil. Soc. 93, 845–862 (2018).
ArticleGoogle Scholar
IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).
Exposito-Alonso, M. et al. Genetic diversity loss in the Anthropocene. Science 377, 1431–1435 (2022).
ArticleCASGoogle Scholar
Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).
ArticleGoogle Scholar
Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. & Wilson, A. C. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284 (1984).
ArticleCASGoogle Scholar
Cooper, R. A. et al. Completeness of the fossil record: estimating losses due to small body size. Geology 34, 241 (2006).
ArticleGoogle Scholar
Smith, A. B. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Phil. Trans. R. Soc. Lond. B 356, 351–367 (2001).
ArticleCASGoogle Scholar
Thomas, R. H., Schaffner, W., Wilson, A. C. & Pääbo, S. DNA phylogeny of the extinct marsupial wolf. Nature 340, 465–467 (1989).
ArticleCASGoogle Scholar
Cooper, A. et al. Independent origins of New Zealand moas and kiwis. Proc. Natl Acad. Sci. USA 89, 8741–8744 (1992).
ArticleCASGoogle Scholar
Wayne, R. K., Leonard, J. A. & Cooper, A. Full of sound and fury: history of ancient DNA. Annu. Rev. Ecol. Syst. 30, 457–477 (1999).
ArticleGoogle Scholar
Knapp, M. & Hofreiter, M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes 1, 227–243 (2010).
ArticleCASGoogle Scholar
Dalal, V., Pasupuleti, N., Chaubey, G., Rai, N. & Shinde, V. Advancements and challenges in ancient DNA research: bridging the global North–South divide. Genes 14, 479 (2023).
ArticleCASGoogle Scholar
Breed, M. F. et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20, 615–628 (2019).
ArticleCASGoogle Scholar
Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).
ArticleCASGoogle Scholar
Hogg, C. J. Translating genomic advances into biodiversity conservation. Nat. Rev. Genet. 25, 362–373 (2024).
ArticleCASGoogle Scholar
Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012).
ArticleCASGoogle Scholar
Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).
ArticleCASGoogle Scholar
Mullin, V. E. et al. First large‐scale quantification study of DNA preservation in insects from natural history collections using genome‐wide sequencing. Methods Ecol. Evol. 14, 360–371 (2023).
ArticleGoogle Scholar
Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR Sci. Technol. Archaeol. Res. 3, 1–14 (2017).
Google Scholar
Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Persp. Biol. 5, a012567 (2013).
Google Scholar
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).
ArticleCASGoogle Scholar
Epp, L. S., Stoof, K. R., Trauth, M. H. & Tiedemann, R. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. J. Paleolimnol. 43, 939–954 (2010).
ArticleGoogle Scholar
Stoof-Leichsenring, K. R., Epp, L. S., Trauth, M. H. & Tiedemann, R. Hidden diversity in diatoms of Kenyan Lake Naivasha: a genetic approach detects temporal variation. Mol. Ecol. 21, 1918–1930 (2012).
ArticleCASGoogle Scholar
Dommain, R. et al. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: a 2200-year-long metagenomic record from Bwindi Impenetrable Forest, Uganda. Front. Ecol. Evol. 8, 218 (2020).
ArticleGoogle Scholar
Epp, L. S. A global perspective for biodiversity history with ancient environmental DNA. Mol. Ecol. 28, 2456–2458 (2019).
ArticleGoogle Scholar
Pedersen, M. W. et al. Ancient and modern environmental DNA. Phil. Trans. R. Soc. Lond. B 370, 20130383 (2015).
ArticleGoogle Scholar
Schlumbaum, A., Tensen, M. & Jaenicke-Després, V. Ancient plant DNA in archaeobotany. Veg. Hist. Archaeobot. 17, 233–244 (2008).
ArticleGoogle Scholar
Murchie, T. J. et al. Pleistocene mitogenomes reconstructed from the environmental DNA of permafrost sediments. Curr. Biol. 32, 851–860.e7 (2022).
ArticleCASGoogle Scholar
Schulte, L. et al. Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA. Commun. Biol. 5, 570 (2022).
ArticleCASGoogle Scholar
Heintzman, P. D. et al. In Tracking Environmental Change Using Lake Sediments (eds Capo, E., Barouillet, C. & Smol, J. P.) 53–84 (Springer International, 2023).
Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).
ArticleCASGoogle Scholar
Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).
ArticleCASGoogle Scholar
Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA: environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
ArticleCASGoogle Scholar
Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118 (2010).
ArticleCASGoogle Scholar
Murchie, T. J. et al. Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nat. Commun. 12, 7120 (2021).
ArticleCASGoogle Scholar
Schulte, L. et al. Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest. Mol. Ecol. Resour. 21, 801–815 (2021).
ArticleCASGoogle Scholar
Cribdon, B., Ware, R., Smith, O., Gaffney, V. & Allaby, R. G. PIA: more accurate taxonomic assignment of metagenomic data demonstrated on sedaDNA from the North Sea. Front. Ecol. Evol. 8, 506594 (2020).
ArticleGoogle Scholar
González Fortes, G. & Paijmans, J. L. A. Whole-genome capture of ancient DNA using homemade baits. Methods Mol. Biol. 1963, 93–105 (2019).
ArticleGoogle Scholar
Soares, A. E. R. Hybridization capture of ancient DNA using RNA baits. Methods Mol. Biol. 1963, 121–128 (2019).
ArticleCASGoogle Scholar
Poinar, H. N. et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394 (2006).
ArticleCASGoogle Scholar
Carpenter, M. L. et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864 (2013).
ArticleCASGoogle Scholar
Nistelberger, H. M., Smith, O., Wales, N., Star, B. & Boessenkool, S. The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains. Sci. Rep. 6, 37347 (2016).
ArticleCASGoogle Scholar
Bunce, M. et al. Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425, 172–175 (2003).
ArticleCASGoogle Scholar
Huynen, L., Millar, C. D., Scofield, R. P. & Lambert, D. M. Nuclear DNA sequences detect species limits in ancient moa. Nature 425, 175–178 (2003).
ArticleCASGoogle Scholar
da Fonseca, R. R. et al. The origin and evolution of maize in the Southwestern United States. Nat. Plants. 1, 14003 (2015).
ArticleGoogle Scholar
Park, S. D. E. et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 16, 234 (2015).
ArticleGoogle Scholar
Wang, M.-S. et al. A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears. Nat. Ecol. Evol. 6, 936–944 (2022).
ArticleGoogle Scholar
Casas-Marce, M. et al. Spatiotemporal dynamics of genetic variation in the iberian lynx along its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol 34, 2893–2907 (2017).
ArticleCASGoogle Scholar
Kellner, F. L. et al. A palaeogenomic investigation of overharvest implications in an endemic wild reindeer subspecies. Mol. Ecol. 33, e17274 (2024).
ArticleGoogle Scholar
Palkopoulou, E. et al. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings. Glob. Chang. Biol. 22, 1710–1721 (2016).
ArticleGoogle Scholar
Baca, M. et al. Ancient DNA reveals interstadials as a driver of common vole population dynamics during the last glacial period. J. Biogeogr. 50, 183–196 (2023).
ArticleGoogle Scholar
Parducci, L., Suyama, Y., Lascoux, M. & Bennett, K. D. Ancient DNA from pollen: a genetic record of population history in Scots pine. Mol. Ecol. 14, 2873–2882 (2005).
ArticleCASGoogle Scholar
Ehrlich, P. R., Kremen, C. & Ehrlich, A. H. in Encyclopedia of Biodiversity 2nd edn (ed. Levin, S. A.) 153–161 (Elsevier, 2013).
Berends, C. J., Köhler, P., Lourens, L. J. & van de Wal, R. S. W. On the cause of the mid‐Pleistocene transition. Rev. Geophys. 59, e2020RG000727 (2021).
ArticleGoogle Scholar
Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114 (2007).
ArticleCASGoogle Scholar
Crump, S. E. et al. Ancient plant DNA reveals High Arctic greening during the Last Interglacial. Proc. Natl Acad. Sci. USA 118, e2019069118 (2021).
ArticleCASGoogle Scholar
Courtin, J. et al. Pleistocene glacial and interglacial ecosystems inferred from ancient DNA analyses of permafrost sediments from Batagay megaslump, East Siberia. Environ. DNA. 4, 1265–1283 (2022).
ArticleCASGoogle Scholar
Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. IPCChttps://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf (2023).
Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016).
ArticleGoogle Scholar
Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).
ArticleGoogle Scholar
Stivrins, N. et al. Biotic turnover rates during the Pleistocene–Holocene transition. Quat. Sci. Rev. 151, 100–110 (2016).
ArticleGoogle Scholar
Wang, Y. et al. Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 600, 86–92 (2021).
ArticleCASGoogle Scholar
Jeffers, E. S. et al. Plant controls on Late Quaternary whole ecosystem structure and function. Ecol. Lett. 21, 814–825 (2018).
ArticleGoogle Scholar
Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).
ArticleCASGoogle Scholar
Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).
ArticleCASGoogle Scholar
Alsos, I. G. et al. Postglacial species arrival and diversity buildup of northern ecosystems took millennia. Sci. Adv. 8, eabo7434 (2022).
ArticleCASGoogle Scholar
Boilard, A. et al. Ancient DNA and osteological analyses of a unique paleo-archive reveal Early Holocene faunal expansion into the Scandinavian Arctic. Sci. Adv. 10, eadk3032 (2024).
ArticleCASGoogle Scholar
Clarke, C. L. et al. Persistence of Arctic–alpine flora during 24,000 years of environmental change in the polar Urals. Sci. Rep. 9, 19613 (2019).
ArticleCASGoogle Scholar
Garcés-Pastor, S. et al. High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change. Nat. Commun. 13, 6559 (2022).
ArticleGoogle Scholar
Pansu, J. et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol. Ecol. 24, 1485–1498 (2015).
ArticleGoogle Scholar
ter Schure, A. T. M. et al. Anthropogenic and environmental drivers of vegetation change in southeastern Norway during the Holocene. Quat. Sci. Rev. 270, 107175 (2021).
ArticleGoogle Scholar
Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).
ArticleCASGoogle Scholar
Boessenkool, S. et al. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conserv. Biol. 28, 446–455 (2014).
ArticleGoogle Scholar
Jia, W. et al. Preservation of sedimentary plant DNA is related to lake water chemistry. Environ. DNA 4, 425–439 (2022).
ArticleCASGoogle Scholar
Isbell, F. et al. Expert perspectives on global biodiversity loss and its drivers and impacts on people. Front. Ecol. Environ. 21, 94–103 (2023).
ArticleGoogle Scholar
Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
ArticleGoogle Scholar
Ruddiman, W. F. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).
ArticleCASGoogle Scholar
Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
ArticleCASGoogle Scholar
Turvey, S. T. & Crees, J. J. Extinction in the Anthropocene. Curr. Biol. 29, R982–R986 (2019).
ArticleCASGoogle Scholar
Capo, E. et al. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environ. Microbiol. 19, 2873–2892 (2017).
ArticleCASGoogle Scholar
Li, F., Zhang, X., Xie, Y. & Wang, J. Sedimentary DNA reveals over 150 years of ecosystem change by human activities in Lake Chao, China. Environ. Int. 133, 105214 (2019).
ArticleCASGoogle Scholar
Ibrahim, A. et al. Anthropogenic impact on the historical phytoplankton community of lake constance reconstructed by multimarker analysis of sediment-core environmental DNA. Mol. Ecol. 30, 3040–3056 (2021).
ArticleCASGoogle Scholar
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).
ArticleCASGoogle Scholar
Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
ArticleCASGoogle Scholar
Barouillet, C. et al. Investigating the effects of anthropogenic stressors on lake biota using sedimentary DNA. Freshw. Biol. 68, 1799–1817 (2022).
ArticleGoogle Scholar
Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).
ArticleGoogle Scholar
Barouillet, C. et al. Paleoreconstructions of ciliate communities reveal long-term ecological changes in temperate lakes. Sci. Rep. 12, 7899 (2022).
ArticleCASGoogle Scholar
Armbrecht, L. et al. Ancient marine sediment DNA reveals diatom transition in Antarctica. Nat. Commun. 13, 5787 (2022).
ArticleCASGoogle Scholar
Bagousse-Pinguet, Y. L. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).
ArticleGoogle Scholar
Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
ArticleGoogle Scholar
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
ArticleCASGoogle Scholar
B-Béres, V. et al. Ecosystem services provided by freshwater and marine diatoms. Hydrobiologia 850, 2707–2733 (2023).
ArticleGoogle Scholar
Murray, D. C. et al. Scrapheap challenge: a novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Sci. Rep. 3, 3371 (2013).
ArticleGoogle Scholar
Woods, R., Barnes, I., Brace, S. & Turvey, S. T. Ancient DNA suggests single colonization and within-archipelago diversification of Caribbean caviomorph rodents. Mol. Biol. Evol. 38, 84–95 (2021).
ArticleCASGoogle Scholar
Dalén, L. et al. Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox. Proc. Natl Acad. Sci. USA 104, 6726–6729 (2007).
ArticleGoogle Scholar
Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1677 (2013).
ArticleGoogle Scholar
Meiri, M., Lister, A., Kosintsev, P., Zazula, G. & Barnes, I. Population dynamics and range shifts of moose (Alces alces) during the Late Quaternary. J. Biogeogr. 47, 2223–2234 (2020).
ArticleGoogle Scholar
Wang, Y. et al. Author Correction: Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 610, E5 (2022).
ArticleCASGoogle Scholar
Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).
ArticleCASGoogle Scholar
Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).
ArticleCASGoogle Scholar
Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).
ArticleGoogle Scholar
White, L. C., Mitchell, K. J. & Austin, J. J. Ancient mitochondrial genomes reveal the demographic history and phylogeography of the extinct, enigmatic thylacine (Thylacinus cynocephalus). J. Biogeogr. 45, 1–13 (2018).
ArticleGoogle Scholar
Murray, G. G. R. et al. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358, 951–954 (2017).
ArticleCASGoogle Scholar
Thomas, J. E. et al. Demographic reconstruction from ancient DNA supports rapid extinction of the great auk. eLife 8, e47509 (2019).
ArticleCASGoogle Scholar
Sharko, F. S. et al. Steller’s sea cow genome suggests this species began going extinct before the arrival of Paleolithic humans. Nat. Commun. 12, 2215 (2021).
ArticleCASGoogle Scholar
Yan, D. et al. Sedimentary DNA reveals phytoplankton diversity loss in a deep maar lake during the Anthropocene. Limnol. Oceanogr. 69, 1299–1315 (2024).
ArticleCASGoogle Scholar
Schmidt, A. et al. Decoding the Baltic Sea’s past and present: a simple molecular index for ecosystem assessment. Ecol. Indic. 166, 112494 (2024).
ArticleCASGoogle Scholar
Siano, R. et al. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr. Biol. 31, 2682–2689.e7 (2021).
ArticleCASGoogle Scholar
Shaw, J. L. A., Weyrich, L. S., Hallegraeff, G. & Cooper, A. Retrospective eDNA assessment of potentially harmful algae in historical ship ballast tank and marine port sediments. Mol. Ecol. 28, 2476–2485 (2019).
ArticleCASGoogle Scholar
Ficetola, G. F. et al. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Sci. Adv. 4, eaar4292 (2018).
ArticleGoogle Scholar
Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife — threats to biodiversity and human health. Science 287, 443–449 (2000).
ArticleCASGoogle Scholar
Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).
ArticleCASGoogle Scholar
Sims, D., Sudbery, I., Ilott, N. E., Heger, A. & Ponting, C. P. Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121–132 (2014).
ArticleCASGoogle Scholar
Depaulis, F., Orlando, L. & Hänni, C. Using classical population genetics tools with heterochroneous data: time matters! PLoS ONE 4, e5541 (2009).
ArticleGoogle Scholar
Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).
ArticleCASGoogle Scholar
Barlow, A. et al. Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears. Curr. Biol. 31, 1771–1779.e7 (2021).
ArticleCASGoogle Scholar
Lord, E. et al. Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol. Evol. 22, 126 (2022).
ArticleGoogle Scholar
Baca, M. et al. Ancient DNA of narrow-headed vole reveal common features of the Late Pleistocene population dynamics in cold-adapted small mammals. Proc. Biol. Sci. 290, 20222238 (2023).
CASGoogle Scholar
Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 29, 1596–1610 (2020).
ArticleGoogle Scholar
Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).
ArticleCASGoogle Scholar
Marr, M. M., Brace, S., Schreve, D. C. & Barnes, I. Identifying source populations for the reintroduction of the Eurasian beaver, Castor fiber L. 1758, into Britain: evidence from ancient DNA. Sci. Rep. 8, 2708 (2018).
ArticleGoogle Scholar
Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395–1400 (2015).
ArticleCASGoogle Scholar
Lord, E. et al. Pre-extinction demographic stability and genomic signatures of adaptation in the woolly rhinoceros. Curr. Biol. 30, 3871–3879.e7 (2020).
ArticleCASGoogle Scholar
von Seth, J. et al. Genomic insights into the conservation status of the world’s last remaining Sumatran rhinoceros populations. Nat. Commun. 12, 2393 (2021).
ArticleGoogle Scholar
van der Valk, T., Díez-Del-Molino, D., Marques-Bonet, T., Guschanski, K. & Dalén, L. Historical genomes reveal the genomic consequences of recent population decline in Eastern Gorillas. Curr. Biol. 29, 165–170.e6 (2019).
ArticleGoogle Scholar
Díez-del-Molino, D., Sánchez-Barreiro, F., Barnes, I., Gilbert, M. T. P. & Dalén, L. Quantifying temporal genomic erosion in endangered species. Trends Ecol. Evol. 33, 176–185 (2018).
ArticleGoogle Scholar
Duncan, R. P., Boyer, A. G. & Blackburn, T. M. Magnitude and variation of prehistoric bird extinctions in the Pacific. Proc. Natl Acad. Sci. USA 110, 6436–6441 (2013).
ArticleCASGoogle Scholar
Wood, J. R. et al. Island extinctions: processes, patterns, and potential for ecosystem restoration. Environ. Conserv. 44, 348–358 (2017).
ArticleGoogle Scholar
Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).
Google Scholar
Roycroft, E. et al. Museum genomics reveals the rapid decline and extinction of Australian rodents since European settlement. Proc. Natl Acad. Sci. USA 118, e2021390118 (2021).
ArticleCASGoogle Scholar
Mathur, S. & DeWoody, J. A. Genetic load has potential in large populations but is realized in small inbred populations. Evol. Appl. 14, 1540–1557 (2021).
ArticleCASGoogle Scholar
Kleinman-Ruiz, D. et al. Purging of deleterious burden in the endangered Iberian lynx. Proc. Natl Acad. Sci. USA 119, e2110614119 (2022).
ArticleCASGoogle Scholar
Grossen, C., Guillaume, F., Keller, L. F. & Croll, D. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11, 1001 (2020).
ArticleCASGoogle Scholar
Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).
ArticleCASGoogle Scholar
Dussex, N. et al. Population genomics of the critically endangered kākāpō. Cell Genom. 1, 100002 (2021).
ArticleCASGoogle Scholar
Dussex, N., Morales, H. E., Grossen, C., Dalén, L. & van Oosterhout, C. Purging and accumulation of genetic load in conservation. Trends Ecol. Evol. 38, 961–969 (2023).
ArticleGoogle Scholar
Feng, S. et al. The genomic footprints of the fall and recovery of the crested ibis. Curr. Biol. 29, 340–349.e7 (2019).
ArticleCASGoogle Scholar
Fordham, D. A., Brook, B. W., Moritz, C. & Nogués-Bravo, D. Better forecasts of range dynamics using genetic data. Trends Ecol. Evol. 29, 436–443 (2014).
ArticleGoogle Scholar
Prost, S. et al. Losing ground: past history and future fate of Arctic small mammals in a changing climate. Glob. Change Biol. 19, 1854–1864 (2013).
ArticleGoogle Scholar
Eastwood, N. et al. The Time Machine framework: monitoring and prediction of biodiversity loss. Trends Ecol. Evol. 37, 138–146 (2022).
ArticleGoogle Scholar
Hatton, I. A., Mazzarisi, O., Altieri, A. & Smerlak, M. Diversity begets stability: sublinear growth and competitive coexistence across ecosystems. Science 383, eadg8488 (2024).
ArticleCASGoogle Scholar
Nwosu, E. C. et al. Early human impact on lake cyanobacteria revealed by a Holocene record of sedimentary ancient DNA. Commun. Biol. 6, 72 (2023).
ArticleGoogle Scholar
Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).
ArticleCASGoogle Scholar
Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).
ArticleCASGoogle Scholar
Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017187 (2012).
Lisiecki, L. E. & Raymo, M. E. A. Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanographyhttps://doi.org/10.1029/2004PA001071 (2005).
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).
ArticleCASGoogle Scholar
Ter Schure, A. T. M. et al. Sedimentary ancient DNA metabarcoding as a tool for assessing prehistoric plant use at the Upper Paleolithic cave site Aghitu-3, Armenia. J. Hum. Evol. 172, 103258 (2022).
ArticleGoogle Scholar
Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).
ArticleCASGoogle Scholar
Download references
Acknowledgements
S. Boessenkool acknowledges support from the Research Council of Norway (grant 314464). The authors thank S. Nylin and K. Norén, as well as the students in course BL7075 at Stockholm University for providing feedback on earlier versions of the manuscript.
Author information
Authors and Affiliations
Centre for Palaeogenetics, Stockholm, Sweden
Amanda Lindahl, Peter D. Heintzman, Love Dalén & David Díez del Molino
Department of Zoology, Stockholm University, Stockholm, Sweden
Amanda Lindahl, Love Dalén & David Díez del Molino
Department of Biology, University of Konstanz, Konstanz, Germany
Laura S. Epp
Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
Sanne Boessenkool
Centre for Ancient Environmental Genomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
Mikkel Winther Pedersen
Natural History Museum, London, UK
Selina Brace
Department of Geological Sciences, Stockholm University, Stockholm, Sweden
Peter D. Heintzman
Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
Love Dalén & David Díez del Molino
Authors
Amanda Lindahl
View author publications
You can also search for this author in PubMedGoogle Scholar
2. Laura S. Epp
View author publications
You can also search for this author in PubMedGoogle Scholar
3. Sanne Boessenkool
View author publications
You can also search for this author in PubMedGoogle Scholar
4. Mikkel Winther Pedersen
View author publications
You can also search for this author in PubMedGoogle Scholar
5. Selina Brace
View author publications
You can also search for this author in PubMedGoogle Scholar
6. Peter D. Heintzman
View author publications
You can also search for this author in PubMedGoogle Scholar
7. Love Dalén
View author publications
You can also search for this author in PubMedGoogle Scholar
8. David Díez del Molino
View author publications
You can also search for this author in PubMedGoogle Scholar
Contributions
L.D., A.L., D.D.d.M. and P.D.H. conceived the review and A.L. wrote the first draft. All authors contributed to discussion of the content, conceptualized the figures, substantially reviewed and edited the manuscript before submission, and approved the final manuscript.
Corresponding authors
Correspondence to Amanda Lindahl or David Díez del Molino.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Tyler Murchie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Convention on Biological Diversity: http://www.cbd.int/
Earth BioGenome Project: https://www.earthbiogenome.org/
The Intergovernmental Panel on Climate Change: https://www.ipcc.ch/
Glossary
Baits
Baits or probes for target enrichment are made of short biotinylated single-stranded DNA or RNA molecules that bind to DNA fragments from specific genomic regions, which are then separated from the remaining non-target DNA molecules.
Bulk bone
A collection of morphologically unidentifiable bone fragments collected from a single stratigraphic layer in a cave, for example.
Endogenous DNA
The fraction of DNA in a sample that derives from the organism(s) under study.
Exogenous DNA
The fraction of DNA in a sample that derives from organisms other than the one(s) under study; this can be introduced by the environment in which the sample is preserved, during handling of the sample, or by laboratory preparations.
Glacial periods
Intervals of time characterized by cold temperatures, the formation of extensive continental ice sheets and reduced sea levels.
Glacial refugia
Geographical areas with warmer climates that provide suitable living conditions for warm-adapted species during glacial periods.
Interglacial periods
Intervals of time between glacial periods characterized by warm temperatures, retreated ice sheets and sea levels comparable to those of today.
Palaeogenomics
The genome-wide analysis of DNA from ancient organisms.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Lindahl, A., Epp, L.S., Boessenkool, S. et al. Palaeogenomic inference of biodiversity dynamics across Quaternary timescales. Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00033-0
Download citation
Accepted:20 February 2025
Published:18 March 2025
DOI:https://doi.org/10.1038/s44358-025-00033-0
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative