nature.com

Cell therapy for liver disorders: past, present and future

Abstract

The liver fulfils a plethora of vital functions and, due to their importance, liver dysfunction has life-threatening consequences. Liver disorders currently account for more than two million deaths annually worldwide and can be classified broadly into three groups, considering their onset and aetiology, as acute liver diseases, inherited metabolic disorders and chronic liver diseases. In the most advanced and severe forms leading to liver failure, liver transplantation is the only treatment available, which has many associated drawbacks, including a shortage of organ donors. Cell therapy via fully mature cell transplantation is an advantageous alternative that may be able to restore a damaged organ’s functionality or serve as a bridge until regeneration can occur. Pioneering work has shown that transplanting adult hepatocytes can support liver recovery. However, primary hepatocytes cannot be grown extensively in vitro as they rapidly lose their metabolic activity. Therefore, different cell sources are currently being tested as alternatives to primary cells. Human pluripotent stem cell-derived cells, chemically induced liver progenitors, or ‘liver’ organoids, hold great promise for developing new cell therapies for acute and chronic liver diseases. This Review focuses on the advantages and drawbacks of distinct cell sources and the relative strategies to address different therapeutic needs in distinct liver diseases.

Key points

The current increase in the number of patients with liver disorders around the world represents a major health care challenge worldwide, especially with liver transplantation being the only treatment for end-stage disease.

Cell therapy can provide a promising alternative for the treatment of liver disorders, as engraftment of hepatocytes in the damaged liver can restore missing hepatic functions.

Liver disorders can be divided into three categories (acute liver diseases, inherited metabolic disorders and chronic liver disease), with different requirements that should be considered in developing a cell therapy strategy.

Primary hepatocytes have been used successfully for cell therapy in the context of liver disease, but the difficulty of growing these cells in vitro hinders therapeutic applications.

Alternative cell sources are currently being explored for wider employment of cell therapy, including human pluripotent stem cell-derived hepatocytes, ‘liver’ organoids, chemically induced liver progenitors, macrophages and mesenchymal stem cells.

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Animal models for the evaluation of cell therapy strategies against distinct liver disorders.

Fig. 2: Differential architecture of ‘liver’ organoids derived from primary hepatocytes or cholangiocytes.

Fig. 3: Potential cell sources for cell therapy applications in liver disorders.

References

Kanel, G. C. in Yamada’s Atlas of Gastroenterology (eds Podolsky, D. K. et al.) 50–57 (Wiley, 2016).

Trefts, E., Gannon, M. & Wasserman, D. H. The liver. Curr. Biol. 27, R1147–R1151 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Mitra, V. & Metcalf, J. Metabolic functions of the liver. Anaesth. Intensive Care Med. 10, 334–335 (2009).

ArticleGoogle Scholar

Yagi, S., Hirata, M., Miyachi, Y. & Uemoto, S. Liver regeneration after hepatectomy and partial liver transplantation. Int. J. Mol. Sci. 21, 8414 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Clemens, M. M., McGill, M. R. & Apte, U. Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. Adv. Pharmacol. 85, 241–262 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Berasain, C. & Avila, M. A. Regulation of hepatocyte identity and quiescence. Cell Mol. Life Sci. 72, 3831 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ding, C. et al. A cell-type-resolved liver proteome. Mol. Cell Proteom. 15, 3190 (2016).

ArticleCASGoogle Scholar

Schulze, R. J., Schott, M. B., Casey, C. A., Tuma, P. L. & McNiven, M. A. Beyond the cell: the cell biology of the hepatocyte: a membrane trafficking machine. J. Cell Biol. 218, 2096 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Banales, J. M. et al. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 16, 269 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Pinto, C., Giordano, D. M., Maroni, L. & Marzioni, M. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1270–1278 (2018).

ArticleCASPubMedGoogle Scholar

Gribben, C. et al. Acquisition of epithelial plasticity in human chronic liver disease. Nature 630, 166–173 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Dixon, L. J., Barnes, M., Tang, H., Pritchard, M. T. & Nagy, L. E. Kupffer cells in the liver. Compr. Physiol. 3, 785–797 (2013).

ArticlePubMedPubMed CentralGoogle Scholar

Kamm, D. R. et al. Hepatic stellate cells in physiology and pathology. J. Physiol. 600, 1825–1837 (2022).

ArticleCASPubMedGoogle Scholar

Poisson, J. et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66, 212–227 (2017).

ArticleCASPubMedGoogle Scholar

Freitas-Lopes, M. A., Mafra, K., David, B. A., Carvalho-Gontijo, R. & Menezes, G. B. Differential location and distribution of hepatic immune cells. Cells 6, 48 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Devarbhavi, H. et al. Global burden of liver disease: 2023 update. J. Hepatol. 79, 516–537 (2023).

ArticlePubMedGoogle Scholar

Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

ArticlePubMedGoogle Scholar

Ma, C. et al. Trends in the economic burden of chronic liver diseases and cirrhosis in the United States: 1996-2016. Am. J. Gastroenterol. 116, 2060–2067 (2021).

ArticlePubMedGoogle Scholar

Dienstag, J. L. & Cosimi, A. B. Liver transplantation – a vision realized. N. Engl. J. Med. 367, 1483–1485 (2012).

ArticleCASPubMedGoogle Scholar

Terrault, N. A., Francoz, C., Berenguer, M., Charlton, M. & Heimbach, J. Liver transplantation 2023: status report, current and fduture challenges. Clin. Gastroenterol. Hepatol. 21, 2150–2166 (2023).

ArticleCASPubMedGoogle Scholar

Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019).

ArticlePubMedGoogle Scholar

Cardinale, V. et al. Cell transplantation-based regenerative medicine in liver diseases. Stem Cell Rep. 18, 1555–1572 (2023).

ArticleCASGoogle Scholar

Nguyen, M. P. et al. Clinical application of hepatocyte transplantation: current status, applicability, limitations, and future outlook. Expert. Rev. Gastroenterol. Hepatol. 14, 185–196 (2020).

ArticleCASPubMedGoogle Scholar

Hu, X. H. et al. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res. Ther. 14, 141 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Stravitz, R. T. & Lee, W. M. Acute liver failure. Lancet 394, 869–881 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lee, W. M., Squires, R. H., Nyberg, S. L., Doo, E. & Hoofnagle, J. H. Acute liver failure: summary of a workshop. Hepatology 47, 1401–1415 (2008).

ArticlePubMedGoogle Scholar

Bernal, W. & Wendon, J. Acute liver failure. N. Engl. J. Med. 369, 2525–2534 (2013).

ArticleCASPubMedGoogle Scholar

Walayat, S., Shoaib, H., Asghar, M., Kim, M. & Dhillon, S. Role of N-acetylcysteine in non-acetaminophen-related acute liver failure: an updated meta-analysis and systematic review. Ann. Gastroenterol. 34, 235–240 (2021).

PubMedPubMed CentralGoogle Scholar

Stravitz, R. T. et al. Future directions in acute liver failure. Hepatology 78, 1266–1289 (2023).

ArticlePubMedGoogle Scholar

Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–65 (1997).

ArticleCASPubMedGoogle Scholar

Vasques, F., Cavazza, A. & Bernal, W. Acute liver failure. Curr. Opin. Crit. Care 28, 198–207 (2022).

ArticlePubMedGoogle Scholar

Stravitz, R. T. et al. Bleeding complications in acute liver failure. Hepatology 67, 1931–1942 (2018).

ArticlePubMedGoogle Scholar

Lisman, T., Leebeek, F. W. G. & De Groot, P. G. Haemostatic abnormalities in patients with liver disease. J. Hepatol. 37, 280–287 (2002).

ArticleCASPubMedGoogle Scholar

Luedde, T., Kaplowitz, N. & Schwabe, R. F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147, 765–783.e4 (2014).

ArticleCASPubMedGoogle Scholar

Dhawan, A. et al. Alginate microencapsulated human hepatocytes for the treatment of acute liver failure in children. J. Hepatol. 72, 877–884 (2020).

ArticleCASPubMedGoogle Scholar

Arroyo, V., Moreau, R. & Jalan, R. Acute-on-chronic liver failure. N. Engl. J. Med. 382, 2137–2145 (2020).

ArticleCASPubMedGoogle Scholar

European Association for the Study of the Liver EASL Clinical Practice Guidelines on acute-on-chronic liver failure. J. Hepatol. 79, 461–491 (2023).

ArticleGoogle Scholar

Shubham, S. et al. Cellular and functional loss of liver endothelial cells correlates with poor hepatocyte regeneration in acute-on-chronic liver failure. Hepatol. Int. 13, 777–787 (2019).

ArticlePubMedGoogle Scholar

Arroyo, M. & Crawford, J. M. Hepatitic inherited metabolic disorders. Semin. Diagn. Pathol. 23, 182–189 (2006).

ArticlePubMedGoogle Scholar

Taddei, T., Mistry, P. & Schilsky, M. L. Inherited metabolic disease of the liver. Curr. Opin. Gastroenterol. 24, 278–286 (2008).

ArticleCASPubMedGoogle Scholar

Scorza, M. et al. Genetic diseases that predispose to early liver cirrhosis. Int. J. Hepatol. 2014, 713754 (2014).

ArticlePubMedPubMed CentralGoogle Scholar

Ferreira, C. R. & van Karnebeek, C. D. M. Inborn errors of metabolism. Handb. Clin. Neurol. 162, 449–481 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Zou, Y. G., Wang, H., Li, W. W. & Dai, D. L. Challenges in pediatric inherited/metabolic liver disease: focus on the disease spectrum, diagnosis and management of relatively common disorders. World J. Gastroenterol. 29, 2114–2126 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Vimalesvaran, S. & Dhawan, A. Liver transplantation for pediatric inherited metabolic liver diseases. World J. Hepatol. 13, 1351–1366 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Anand, H., Nulty, J. & Dhawan, A. Cell therapy in congenital inherited hepatic disorders. Best Pract Res Clin Gastroenterol 56–57, 101772 (2022).

ArticlePubMedGoogle Scholar

Hansel, M. C. et al. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. Curr. Protoc. Toxicol. 62, 14.12.1–14.12.23 (2014).

ArticlePubMedGoogle Scholar

De Serres, F. J., Blanco, I. & Fernández-Bustillo, E. PI S and PI Z alpha-1 antitrypsin deficiency worldwide. a review of existing genetic epidemiological data. Monaldi Arch. Chest Dis. 67, 184–208 (2007).

PubMedGoogle Scholar

Greene, C. M. et al. α1-Antitrypsin deficiency. Nat. Rev. Dis. Primers 2, 16051 (2016).

ArticlePubMedGoogle Scholar

Irving, J. A. et al. The serpinopathies studying serpin polymerization in vivo. Methods Enzymol. 501, 421–466 (2011).

ArticleCASPubMedGoogle Scholar

McCarthy, C., Reeves, E. P. & McElvaney, N. G. The role of neutrophils in alpha-1 antitrypsin deficiency. Ann. Am. Thorac. Soc. 13 (Suppl. 4), S297–S304 (2016).

ArticlePubMedGoogle Scholar

Greene, C. M. et al. Alpha-1 antitrypsin deficiency: a conformational disease associated with lung and liver manifestations. J. Inherit. Metab. Dis. 31, 21–34 (2008).

ArticleCASPubMedGoogle Scholar

Fregonese, L. & Stolk, J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J. Rare Dis. 3, 16 (2008).

ArticlePubMedPubMed CentralGoogle Scholar

Strnad, P., McElvaney, N. G. & Lomas, D. A. Alpha1-antitrypsin deficiency. N. Engl. J. Med. 382, 1443–1455 (2020).

ArticleCASPubMedGoogle Scholar

Fisher, R. A. & Strom, S. C. Human hepatocyte transplantation: worldwide results. Transplantation 82, 441–449 (2006).

ArticlePubMedGoogle Scholar

Cheemerla, S. & Balakrishnan, M. Global epidemiology of chronic liver disease. Clin. Liver Dis. 17, 365–370 (2021).

ArticleGoogle Scholar

Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

ArticlePubMedGoogle Scholar

Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Haep, N., Florentino, R. M., Squires, J. E., Bell, A. & Soto-Gutierrez, A. The inside-out of end-stage liver disease: hepatocytes are the keystone. Semin. Liver Dis. 41, 213–224 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Vogel, A., Meyer, T., Sapisochin, G., Salem, R. & Saborowski, A. Hepatocellular carcinoma. Lancet 400, 1345–1362 (2022).

ArticleCASPubMedGoogle Scholar

Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2021).

ArticlePubMedGoogle Scholar

Robinson, N. B. et al. The current state of animal models in research: a review. Int. J. Surg. 72, 9–13 (2019).

ArticlePubMedGoogle Scholar

Mossanen, J. C. & Tacke, F. Acetaminophen-induced acute liver injury in mice. Lab. Anim. 49, 30–36 (2015).

ArticleCASPubMedGoogle Scholar

Singer, A. J., Carracio, T. R. & Mofenson, H. C. The temporal profile of increased transaminase levels in patients with acetaminophen-induced liver dysfunction. Ann. Emerg. Med. 26, 49–53 (1995).

ArticleCASPubMedGoogle Scholar

McGill, M. R. & Jaeschke, H. Animal models of drug-induced liver injury. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1031–1039 (2019).

ArticleCASPubMedGoogle Scholar

Mcgill, M. R. et al. HepaRG cells: A human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 53, 974–982 (2011).

ArticleCASPubMedGoogle Scholar

Dandri, M. et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 33, 981–988 (2001).

ArticleCASPubMedGoogle Scholar

Mercer, D. F. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

ArticleCASPubMedGoogle Scholar

Tateno, C. et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am. J. Pathol. 165, 901–912 (2004).

ArticleCASPubMedPubMed CentralGoogle Scholar

Douglas, D. N. et al. Therapeutic efficacy of human hepatocyte transplantation in a SCID/uPA mouse model with inducible liver disease. PLoS ONE 5, e9209 (2010).

ArticlePubMedPubMed CentralGoogle Scholar

Strom, S. C., Davila, J. & Grompe, M. Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol. Biol. 640, 491–509 (2010).

ArticleCASPubMedPubMed CentralGoogle Scholar

Azuma, H. et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat. Biotechnol. 25, 903–910 (2007).

ArticleCASPubMedPubMed CentralGoogle Scholar

Grompe, M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes. Dev. 7, 2298–22307 (1993).

ArticleCASPubMedGoogle Scholar

Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 10, 453–460 (1995).

ArticleCASPubMedGoogle Scholar

Kabbani, M. et al. Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Rep. 40, 111321 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wilson, E. M. et al. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res. 13, 404–412 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

Naugler, W. E. et al. Fibroblast growth factor signaling controls liver size in mice with humanized livers. Gastroenterology 149, 728–740.e15 (2015).

ArticleCASPubMedGoogle Scholar

Torres, S. et al. Endoplasmic reticulum stress-induced upregulation of STARD1 promotes acetaminophen-induced acute liver failure. Gastroenterology 157, 552–568 (2019).

ArticleCASPubMedGoogle Scholar

Zabulica, M. et al. Correction of a urea cycle defect after ex vivo gene editing of human hepatocytes. Mol. Ther. 29, 1903–1917 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Overturf, K., Al-Dhalimy, M., Ou, C. N., Finegold, M. & Grompe, M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151, 1273–1280 (1997).

CASPubMedPubMed CentralGoogle Scholar

Ren, J. et al. Generation of immunodeficient pig with hereditary tyrosinemia type 1 and their preliminary application for humanized liver. Cell Biosci. 12, 26 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zhao, H. et al. Development of RAG2−/− IL2Rγ−/Y immune deficient FAH-knockout miniature pig. Front. Immunol. 13, 950194 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Nelson, E. D. et al. Limited expansion of human hepatocytes in FAH/RAG2-deficient swine. Tissue Eng. Part. A 28, 150–160 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Scholten, D., Trebicka, J., Liedtke, C. & Weiskirchen, R. The carbon tetrachloride model in mice. Lab. Anim. 49, 4–11 (2015).

ArticleCASPubMedGoogle Scholar

Du, Y. et al. Mouse models of liver parenchyma injuries and regeneration. Front. Cell Dev. Biol. 10, 903740 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Hasegawa, Y. et al. Long-term effects of western diet consumption in male and female mice. Sci. Rep. 10, 14686 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Mariotti, V., Strazzabosco, M., Fabris, L. & Calvisi, D. F. Animal models of biliary injury and altered bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1254–1261 (2018).

ArticleCASPubMedGoogle Scholar

Aller, M. A. et al. Comparative study of macro- and microsurgical extrahepatic cholestasis in the rat. Microsurgery 24, 442–447 (2004).

ArticlePubMedGoogle Scholar

Garrido, M. Bile duct ligature in young rats: a revisited animal model for biliary atresia. Eur. J. Histochem. 61, 2803 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Lazaridis, K. N. & Larusso, N. F. The cholangiopathies. Mayo Clin. Proc. 90, 791–800 (2015).

ArticleCASPubMedGoogle Scholar

Pose, E., Sancho-Bru, P. & Coll, M. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine diet: a rodent model in cholestasis research. Methods Mol. Biol. 1981, 249–257 (2019).

ArticleCASPubMedGoogle Scholar

Becker, B. A. & Plaa, G. L. The nature of α-naphthylisothiocyanate-induced cholestasis. Toxicol. Appl. Pharmacol. 7, 680–685 (1965).

ArticleCASPubMedGoogle Scholar

Ikenaga, N. et al. A new Mdr2−/− mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer. Am. J. Pathol. 185, 325–334 (2015).

ArticleCASPubMedGoogle Scholar

Tsukamoto, T. Animal disease models for drug screening: the elephant in the room? Drug. Discov. Today 21, 529–530 (2016).

ArticlePubMedGoogle Scholar

Schlegel, A. et al. Machine perfusion of the liver and bioengineering. J. Hepatol. 78, 1181–1198 (2023).

ArticleCASPubMedGoogle Scholar

Eshmuminov, D. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 38, 189–198 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sampaziotis, F. et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 371, 839–846 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Iansante, V., Mitry, R. R., Filippi, C., Fitzpatrick, E. & Dhawan, A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr. Res. 83, 232–240 (2017).

ArticlePubMedGoogle Scholar

Matas, A. J. et al. Hepatocellular transplantation for metabolic deficiencies: decrease of plasms bilirubin in Gunn rats. Science 192, 892–894 (1976).

ArticleCASPubMedGoogle Scholar

Moscioni, A. D. et al. Human liver cell transplantation: prolonged function in athymic-Gunn and athymic-analbuminemic hybrid rats. Gastroenterology 96, 1546–1551 (1989).

ArticleCASPubMedGoogle Scholar

Mito, M. & Kusano, M. Hepatocyte transplantation in man. Cell Transpl. 2, 65–74 (1993).

ArticleGoogle Scholar

Habibullah, C. M., Syed, I. H., Qamar, A. & Taher-Uz, Z. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation 58, 951–952 (1994).

ArticleCASPubMedGoogle Scholar

Nulty, J., Anand, H. & Dhawan, A. Human hepatocyte transplantation: three decades of clinical experience and future perspective. Stem Cell Transl. Med. 13, 204–218 (2024).

ArticleCASGoogle Scholar

Strom, S. C. et al. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 63, 559–569 (1997).

ArticleCASPubMedGoogle Scholar

Fox, I. J. et al. Treatment of the Crigler–Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 338, 1422–1426 (1998).

ArticleCASPubMedGoogle Scholar

Nulty, J., Anand, H. & Dhawan, A. Human hepatocyte transplantation: three decades of clinical experience and future perspective. Stem Cell Transl. Med. 13, 204–218 (2023).

ArticleGoogle Scholar

Papatheodoridi, M., Mazza, G. & Pinzani, M. Regenerative hepatology: in the quest for a modern Prometheus? Dig. Liver Dis. 52, 1106–1114 (2020).

ArticleCASPubMedGoogle Scholar

Lauschke, V. M. et al. Massive rearrangements of cellular microRNA signatures are key drivers of hepatocyte dedifferentiation. Hepatology 64, 1743–1756 (2016).

ArticleCASPubMedGoogle Scholar

Lee, C. A., Dhawan, A., Smith, R. A., Mitry, R. R. & Fitzpatrick, E. Instant blood-mediated inflammatory reaction in hepatocyte transplantation: current status and future perspectives. Cell Transpl. 25, 1227–1236 (2016).

ArticleGoogle Scholar

Barahman, M. et al. Hepatocyte transplantation: quo vadis? Int. J. Radiat. Oncol. Biol. Phys. 103, 922–923 (2019).

ArticlePubMedGoogle Scholar

Li, X., Wang, Y., Yang, H. & Dai, Y. Liver and hepatocyte transplantation: what can pigs contribute? Front. Immunol. 12, 802692 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Yamamoto, T. et al. Treatment of acute liver failure in mice by hepatocyte xenotransplantation. Cell Transpl. 19, 799–806 (2010).

ArticleGoogle Scholar

Gomez, N. et al. Evidence for survival and metabolic activity of encapsulated xenogeneic hepatocytes transplanted without immunosuppression in Gunn rats. Transplantation 63, 1718–1723 (1997).

ArticleCASPubMedGoogle Scholar

Nagata, H. et al. Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology 132, 321–329 (2007).

ArticleCASPubMedGoogle Scholar

Machaidze, Z. et al. Testing of microencapsulated porcine hepatocytes in a new model of fulminant liver failure in baboons. Xenotransplantation 24, e12297 (2017).

ArticleGoogle Scholar

Meier, R. P. H. et al. Current status of hepatocyte xenotransplantation. Int. J. Surg. 23, 273–279 (2015).

ArticlePubMedGoogle Scholar

Hara, H. et al. An in vitro model of pig liver xenotransplantation – pig complement is associated with reduced lysis of wild-type and genetically modified pig cells. Xenotransplantation 17, 370–378 (2010).

ArticlePubMedGoogle Scholar

Damdimopoulou, P. et al. Human embryonic stem cells. Best. Pract. Res. Clin. Obstet. Gynaecol. 31, 2–12 (2016).

ArticlePubMedGoogle Scholar

Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

ArticleCASPubMedGoogle Scholar

Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

ArticleCASPubMedGoogle Scholar

Takahashi, K. & Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17, 183–193 (2016).

ArticleCASPubMedGoogle Scholar

Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug. Discov. 16, 115–130 (2017).

ArticleCASPubMedGoogle Scholar

Hannan, N. R. F., Segeritz, C. P., Touboul, T. & Vallier, L. Production of hepatocyte like cells from human pluripotent stem cells. Nat. Protoc. 8, 430–437 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Li, R., Zhao, Y., Yourick, J. J., Sprando, R. L. & Gao, X. Homogeneous differentiation of functional hepatocytes from human induced pluripotent stem cells. Methods Mol. Biol. 2429, 127–142 (2022).

ArticleCASPubMedGoogle Scholar

Kaserman, J. E. & Wilson, A. A. Protocol for directed differentiation of human induced pluripotent stem cells (iPSCs) to a hepatic lineage. Methods Mol. Biol. 1639, 151–160 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Tomaz, R. A. et al. Generation of functional hepatocytes by forward programming with nuclear receptors. Elife 11, e71591 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Baxter, M. et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J. Hepatol. 62, 581–589 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wesley, B. T. et al. Single-cell atlas of human liver development reveals pathways directing hepatic cell fates. Nat. Cell Biol. 24, 1487–1498 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Beath, S. V. Hepatic function and physiology in the newborn. Semin. Neonatology 8, 337–346 (2003).

ArticleCASGoogle Scholar

Ortmann, D. & Vallier, L. Variability of human pluripotent stem cell lines. Curr. Opin. Genet. Dev. 46, 179–185 (2017).

ArticleCASPubMedGoogle Scholar

Pawlowski, M. et al. Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Rep. 8, 803–812 (2017).

ArticleCASGoogle Scholar

Huang, P. et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14, 370–384 (2014).

ArticleCASPubMedGoogle Scholar

Du, Y. et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 14, 394–403 (2014).

ArticleCASPubMedGoogle Scholar

Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390–393 (2011).

ArticleCASPubMedGoogle Scholar

Zhu, S. et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature 508, 93–97 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

Miura, S. & Suzuki, A. Generation of mouse and human organoid-forming intestinal progenitor cells by direct lineage reprogramming. Cell Stem Cell 21, 456–471.e5 (2017).

ArticleCASPubMedGoogle Scholar

Huang, C. Y. et al. Human iPSC banking: barriers and opportunities. J. Biomed. Sci. 26, 87 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Xu, H. et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e7 (2019).

ArticleCASPubMedGoogle Scholar

Fourrier, A. et al. Regenerative cell therapy for the treatment of hyperbilirubinemic Gunn rats with fresh and frozen human induced pluripotent stem cells-derived hepatic stem cells. Xenotransplantation 27, e12544 (2020).

ArticlePubMedGoogle Scholar

Yusa, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 (2011).

ArticleCASPubMedPubMed CentralGoogle Scholar

Liu, H., Kim, Y., Sharkis, S., Marchionni, L. & Jang, Y. Y. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci. Transl. Med. 3, 82ra39 (2011).

ArticlePubMedPubMed CentralGoogle Scholar

Asgari, S. et al. Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev. Rep. 9, 493–504 (2013).

ArticleCASPubMedGoogle Scholar

Tolosa, L. et al. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res. Ther. 6, 246 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Gantier, M. et al. Cryopreserved cGMP-compliant human pluripotent stem cell-derived hepatic progenitors rescue mice from acute liver failure through rapid paracrine effects on liver cells. Stem Cell Res. Ther. 15, 71 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Nagamoto, Y. et al. Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure. J. Hepatol. 64, 1068–1075 (2016).

ArticlePubMedGoogle Scholar

Chen, S. et al. Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Res. 30, 95–97 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Ortuño-Costela, M. D. C., Cerrada, V., García-López, M. & Gallardo, M. E. The challenge of bringing iPSCs to the patient. Int. J. Mol. Sci. 20, 6305 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Attwood, S. W. & Edel, M. J. iPS-cell technology and the problem of genetic instability – can it ever be safe for clinical use? J. Clin. Med. 8, 288 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Liu, X., Li, W., Fu, X. & Xu, Y. The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front. Immunol. 8, 645 (2017).

ArticlePubMedPubMed CentralGoogle Scholar

Yamanaka, S. Pluripotent stem cell-based cell therapy – promise and challenges. Cell Stem Cell 27, 523–531 (2020).

ArticleCASPubMedGoogle Scholar

Fattahi, P. et al. Core–shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor. Sci. Rep. 11, 7177 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Finklea, F. B. et al. Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 274, 120818 (2021).

ArticleCASPubMedGoogle Scholar

Marsee, A. et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28, 816–832 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Harrison, S. P. et al. Liver organoids: recent developments, limitations and potential. Front. Med. 8, 574047 (2021).

ArticleGoogle Scholar

Prior, N., Inacio, P. & Huch, M. Liver organoids: from basic research to therapeutic applications. Gut 68, 2228–2237 (2019).

ArticleCASPubMedGoogle Scholar

Guan, Y. & Peltz, G. Hepatic organoids move from adolescence to maturity. Liver Int. 44, 1290–1297 (2024).

ArticleCASPubMedGoogle Scholar

Kozlowski, M. T., Kozlowski, C. J. & Ku, H. T. Towards organoid culture without Matrigel. Commun. Biol. 4, 1387 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606.e19 (2018).

ArticleCASPubMedGoogle Scholar

Peng, W. C. et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619.e15 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Hendriks, D. et al. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth. Nat. Commun. 15, 4034 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat. Cell Biol. 22, 321–331 (2020).

ArticleCASPubMedGoogle Scholar

Hendriks, D., Artegiani, B., Hu, H., Chuva de Sousa Lopes, S. & Clevers, H. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat. Protoc. 16, 182–217 (2021).

ArticleCASPubMedGoogle Scholar

Hendriks, D. et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat. Biotechnol. 41, 1567–1581 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sampaziotis, F. et al. Directed differentiation of human induced pluripotent stem cells into functional cholangiocyte-like cells. Nat. Protoc. 12, 814–827 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Dianat, N. et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 60, 700–714 (2014).

ArticleCASPubMedGoogle Scholar

Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sampaziotis, F. et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat. Med. 23, 954–963 (2017).

ArticleCASPubMedGoogle Scholar

Babboni, S. et al. Cholangiocyte organoids: the new frontier in regenerative medicine for the study and treatment of cholangiopathies. J. Clin. Med. 13, 1804 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Katsuda, T. & Ochiya, T. Chemically induced liver progenitors (CLiPs): a novel cell source for hepatocytes and biliary epithelial cells. Methods Mol. Biol. 1905, 117–130 (2019).

ArticleCASPubMedGoogle Scholar

Katsuda, T. et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 20, 41–55 (2017).

ArticleCASPubMedGoogle Scholar

Katsuda, T. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. Elife 8, e47313 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kim, Y. et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J. Hepatol. 70, 97–107 (2019).

ArticleCASPubMedGoogle Scholar

Miyoshi, T. et al. Successful induction of human chemically induced liver progenitors with small molecules from damaged liver. J. Gastroenterol. 57, 441–452 (2022).

ArticleCASPubMedGoogle Scholar

Zhang, K. et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 23, 806–819.e4 (2018).

ArticleCASPubMedGoogle Scholar

Yuan, X. et al. Preclinical efficacy and safety of encapsulated proliferating human hepatocyte organoids in treating liver failure. Cell Stem Cell 31, 484–498.e5 (2024).

ArticleCASPubMedGoogle Scholar

Zhang, K. et al. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases. Cell Stem Cell 31, 1187–1202.e8 (2024).

ArticleCASPubMedGoogle Scholar

Hosaka, K., Katsuda, T., Terai, S. & Ochiya, T. in Stem Cells and Cancer in Hepatology: From the Essentials to Application Ch. 5 (ed. Zheng, Y. W.) 77–101 (Academic Press, 2018).

Dey, M. & Ozbolat, I. T. 3D bioprinting of cells, tissues and organs. Sci. Rep. 10, 14023 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Zhang, J., Wehrle, E., Rubert, M. & Müller, R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int. J. Mol. Sci. 12, 3971 (2021).

ArticleGoogle Scholar

Nguyen, D. G. et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS ONE 11, e0158674 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Wang, X. et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng. 12, 83–90 (2006).

ArticleCASPubMedGoogle Scholar

Goulart, E. et al. 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro. Biofabrication 12, 015010 (2019).

ArticlePubMedGoogle Scholar

Jeon, H. et al. Generation of multilayered 3D structures of HepG2 cells using a bio-printing technique. Gut Liver 11, 121–128 (2017).

ArticlePubMedGoogle Scholar

Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).

ArticleCASGoogle Scholar

Sun, L., Wang, Y., Zhang, S., Yang, H. & Mao, Y. 3D bioprinted liver tissue and disease models: current advances and future perspectives. Biomater. Adv. 152, 213499 (2023).

ArticleCASPubMedGoogle Scholar

Guilliams, M. & Scott, C. L. Liver macrophages in health and disease. Immunity 55, 1515–1529 (2022).

ArticleCASPubMedGoogle Scholar

Wen, Y., Lambrecht, J., Ju, C. & Tacke, F. Hepatic macrophages in liver homeostasis and diseases – diversity, plasticity and therapeutic opportunities. Cell Mol. Immunol. 18, 45–56 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Bird, T. G. et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc. Natl Acad. Sci. USA 110, 6542–6547 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Moroni, F. et al. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat. Med. 25, 1560–1565 (2019).

ArticleCASPubMedGoogle Scholar

Brennan, P. N. et al. Study protocol: a multicentre, open-label, parallel-group, phase 2, randomised controlled trial of autologous macrophage therapy for liver cirrhosis (MATCH). BMJ Open 11, e053190 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Brennan, P. N. et al. Autologous macrophage therapy for liver cirrhosis: a phase 2 open-label randomized controlled trial. Nat. Med. https://doi.org/10.1038/s41591-024-03406-8 (2025).

Na, Y. R., Kim, S. W. & Seok, S. H. A new era of macrophage-based cell therapy. Exp. Mol. Med. 55, 1945–1954 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ping, D., Peng, Y., Hu, X. & Liu, C. Macrophage cytotherapy on liver cirrhosis. Front. Pharmacol. 14, 1265935 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

ArticleCASPubMedGoogle Scholar

Ding, D. C., Shyu, W. C. & Lin, S. Z. Mesenchymal stem cells. Cell Transpl. 20, 5–14 (2011).

ArticleGoogle Scholar

Eom, Y. W., Yoon, Y. & Baik, S. K. Mesenchymal stem cell therapy for liver disease: current status and future perspectives. Curr. Opin. Gastroenterol. 37, 216–223 (2021).

ArticleCASPubMedGoogle Scholar

Cao, Y., Ji, C. & Lu, L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. Ann. Transl. Med. 8, 562 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Salama, H. et al. Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res. Ther. 5, 70 (2014).

ArticlePubMedPubMed CentralGoogle Scholar

Lin, B. L. et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology 66, 209–219 (2017).

ArticleCASPubMedGoogle Scholar

Liu, Y., Dong, Y., Wu, X., Xu, X. & Niu, J. The assessment of mesenchymal stem cells therapy in acute on chronic liver failure and chronic liver disease: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res. Ther. 13, 204 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Musiał-Wysocka, A., Kot, M. & Majka, M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transpl. 28, 801–812 (2019).

ArticleGoogle Scholar

Margiana, R. et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res. Ther. 13, 366 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Bando, H. et al. Safety of cell therapy products: in-vitro methods to assess the tumorigenicity of human cell-based therapeutic products. Cytotherapy 22, S42 (2020).

ArticleGoogle Scholar

Wang, Q. et al. Pancreatic islet transplantation: current advances and challenges. Front. Immunol. 15, 1391504 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wang, F. et al. Cell-therapy for Parkinson’s disease: a systematic review and meta-analysis. J. Transl. Med. 21, 601 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Shani, T. & Hanna, J. H. Universally non-immunogenic iPSCs. Nat. Biomed. Eng. 3, 337–338 (2019).

ArticlePubMedGoogle Scholar

de Rham, C. & Villard, J. Potential and limitation of HLA-based banking of human pluripotent stem cells for cell therapy. J. Immunol. Res. 2014, 518135 (2014).

PubMedPubMed CentralGoogle Scholar

Krooss, S. A. et al. Ex vivo/in vivo gene editing in hepatocytes using “All-in-one” CRISPR-adeno-associated virus vectors with a self-linearizing repair template. iScience 23, 100764 (2020).

ArticleCASPubMedGoogle Scholar

VanLith, C. J. et al. Ex vivo hepatocyte reprograming promotes homology-directed DNA repair to correct metabolic disease in mice after transplantation. Hepatol. Commun. 3, 558–573 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

van Wilgenburg, B., Browne, C., Vowles, J. & Cowley, S. A. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS ONE 8, e71098 (2013).

ArticlePubMedPubMed CentralGoogle Scholar

Speicher, A. M. et al. Deterministic programming of human pluripotent stem cells into microglia facilitates studying their role in health and disease. Proc. Natl Acad. Sci. USA 119, e2123476119 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

ArticleCASPubMedGoogle Scholar

Zabaleta, N., Torella, L., Weber, N. D. & Gonzalez-Aseguinolaza, G. mRNA and gene editing: late breaking therapies in liver diseases. Hepatology 76, 869–887 (2022).

ArticleCASPubMedGoogle Scholar

Zabaleta, N., Unzu, C., Weber, N. D. & Gonzalez-Aseguinolaza, G. Gene therapy for liver diseases – progress and challenges. Nat. Rev. Gastroenterol. Hepatol. 20, 288–305 (2023).

ArticlePubMedGoogle Scholar

Fontes, P., Komori, J., Lopez, R., Marsh, W. & Lagasse, E. Development of ectopic livers by hepatocyte transplantation into swine lymph nodes. Liver Transplant. 26, 1629–1643 (2020).

ArticleGoogle Scholar

Wang, F. et al. Monitoring of intrasplenic hepatocyte transplantation for acute-on-chronic liver failure: a prospective five-year follow-up study. Transplant. Proc. 46, 192–198 (2014).

ArticleCASPubMedGoogle Scholar

Download references

Acknowledgements

The laboratory of L.V. is funded by core grants from the BIH and Max Planck Institute for Molecular Genetics, the ERC advanced grant Fun-Chol, and the Einstein Foundation.

Author information

Authors and Affiliations

Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany

M. Carmen Ortuño-Costela & Ludovic Vallier

Max Planck Institute for Molecular Genetics, Berlin, Germany

M. Carmen Ortuño-Costela & Ludovic Vallier

University College London Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK

Massimo Pinzani

University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies (UPMC-ISMETT), Palermo, Italy

Massimo Pinzani

Authors

M. Carmen Ortuño-Costela

View author publications

You can also search for this author inPubMedGoogle Scholar

2. Massimo Pinzani

View author publications

You can also search for this author inPubMedGoogle Scholar

3. Ludovic Vallier

View author publications

You can also search for this author inPubMedGoogle Scholar

Contributions

M.C.O.-C. researched data for the article. L.V. and M.P. contributed substantially to discussion of the content. L.V. and M.C.O.-C. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ludovic Vallier.

Ethics declarations

Competing interests

L.V. is a shareholder of bit.bio and Bilitech. Both companies developed cell-based therapies against liver diseases. M.P. is a cofounder, shareholder, and consultant for Engitix Therapeutics. M.C.O.-C. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Pedro Baptista, Javier Martinez, Tobias Cantz, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortuño-Costela, M.C., Pinzani, M. & Vallier, L. Cell therapy for liver disorders: past, present and future. Nat Rev Gastroenterol Hepatol (2025). https://doi.org/10.1038/s41575-025-01050-2

Download citation

Accepted:11 February 2025

Published:18 March 2025

DOI:https://doi.org/10.1038/s41575-025-01050-2

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page