Abstract
Floodplain river ecosystems have been extensively artificially constrained globally. As climate change heightens flood risks, the command-and-control approach to river flood management is beginning to make way for a paradigm shift towards ‘living with water’. The ecological co-benefits of this shift, where rivers are given the space they need to migrate on the landscape, have so far been undervalued. Here we synthesize the ecological benefits of allowing rivers more room to move. We emphasize how the physical and ecological processes of unconfined river channels interact to provide the foundations for ecosystem resilience through spatiotemporal variability in multiple dimensions, including hydrologic and meta-ecosystem connectivity. More informed and sustainable decision-making that involves trade-offs between river ecology and engineering will be aided by elucidating these connections. Giving rivers more room to move can represent a mutually beneficial solution for both the freshwater biodiversity crisis and flood hazard management as climate-driven extremes escalate.
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Change institution
Buy or subscribe
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: The physical and ecological processes of unconfined floodplain river channels interact to provide the foundations for ecosystem resilience.
Fig. 2: When a river has space to move on its floodplain, the natural flow regime (including the magnitude, frequency and temporal dimension) can be expressed in all parts of the riverscape, including within floodplain habitats.
Fig. 3: Unconstrained rivers contain an extensive variety of habitats, which can each support unique species, life histories and food webs.
Fig. 4: A river that is not unnaturally confined will have a planform that varies spatially, producing process domains with contrasting ecosystem functions.
Fig. 5: Heterogeneous habitats are more likely to include refuges, providing resistance from and resources during disturbances.
References
Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).
ArticleCASPubMedGoogle Scholar
Tonkin, J. D. et al. Prepare river ecosystems for an uncertain future. Nature 570, 301–303 (2019).
ArticleCASPubMedGoogle Scholar
Blöschl et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).
ArticlePubMedGoogle Scholar
Blöschl et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).
ArticlePubMedGoogle Scholar
Intergovernmental Panel on Climate Change (IPCC). Technical Summary. In Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 37–118 (Cambridge Univ. Press, 2023).
Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).
ArticleGoogle Scholar
Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L. Increasing risk of great floods in a changing climate. Nature 415, 514–517 (2002).
ArticleCASPubMedGoogle Scholar
Death, R. G., Fuller, I. C. & Macklin, M. G. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology. Freshw. Biol. 60, 2477–2496 (2015).
ArticleGoogle Scholar
Dryden, R., Anand, M., Lehner, B. & Fluet-Chouinard, E. Do we prioritize floodplains for development and farming? Mapping global dependence and exposure to inundation. Glob. Environ. Change 71, 102370 (2021).
ArticleGoogle Scholar
Rhoads, B. L. in River Dynamics: Geomorphology to Support Management 343–368 (Cambridge Univ. Press, 2020).
Han, Y. et al. The growth mode of built-up land in floodplains and its impacts on flood vulnerability. Sci. Total Environ. 700, 134462 (2020).
ArticleCASPubMedGoogle Scholar
Knighton, D. Fluvial Forms & Processes: A New Perspective (Arnold, 1998).
Kline, M. Giving our rivers room to move: new strategy and contribution to protecting Vermont’s communities and ensuring clean water. Vt. J. Environ. Law 17, 733–765 (2016).
Google Scholar
Lane, S. N., Tayefi, V., Reid, S. C., Yu, D. & Hardy, R. J. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surf. Process. Landf. 32, 429–446 (2007).
ArticleGoogle Scholar
Biron, P. M. et al. Freedom space for rivers: a sustainable management approach to enhance river resilience. Environ. Manage. 54, 1056–1073 (2014).
ArticlePubMedGoogle Scholar
Evans, E. et al. Future flood risk management in the UK. Proc. Inst. Civ. Eng. Water Manag. 159, 53–61 (2006).
ArticleGoogle Scholar
Rijke, J., Van Herk, S., Zevenbergen, C. & Ashley, R. Room for the River: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manag. 10, 369–382 (2012).
ArticleGoogle Scholar
Höckendorff, S. et al. Characterizing fish responses to a river restoration over 21 years based on species’ traits: fish responses to river restoration. Conserv. Biol. 31, 1098–1108 (2017).
ArticlePubMedGoogle Scholar
van Alphen, S. in Adaptive Strategies for Water Heritage: Past, Present and Future (ed. Hein, C.) 309–323 (Springer, 2020).
Klijn, F., De Bruin, D., De Hoog, M. C., Jansen, S. & Sijmons, D. F. Design quality of room-for-the-river measures in the Netherlands: role and assessment of the quality team (Q-team). Int. J. River Basin Manag. 11, 287–299 (2013).
ArticleGoogle Scholar
Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).
ArticleGoogle Scholar
Ward, J. V., Tockner, K., Arscott, D. B. & Claret, C. Riverine landscape diversity. Freshw. Biol. 47, 517–539 (2002).
ArticleGoogle Scholar
Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2016).
ArticleGoogle Scholar
Lynch, A. J. et al. People need freshwater biodiversity. WIREs Water 10, e1633 (2023).
ArticleGoogle Scholar
WWF. Living Planet Report 2022 – Building a Nature Positive Society (WWF, 2022).
Google Scholar
Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).
ArticlePubMedGoogle Scholar
Van Rees, C. B. et al. An interdisciplinary overview of levee setback benefits: supporting spatial planning and implementation of riverine nature‐based solutions. WIREs Water 11, e1750 (2024).
ArticleGoogle Scholar
Knox, R. L., Wohl, E. E. & Morrison, R. R. Levees don’t protect, they disconnect: a critical review of how artificial levees impact floodplain functions. Sci. Total Environ. 837, 155773 (2022).
ArticleCASPubMedGoogle Scholar
Dierauer, J., Pinter, N. & Remo, J. W. F. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA. J. Hydrol. 450–451, 1–8 (2012).
ArticleGoogle Scholar
Heine, R. A. & Pinter, N. Levee effects upon flood levels: an empirical assessment. Hydrol. Process. 26, 3225–3240 (2012).
ArticleGoogle Scholar
Curran, J. C., Dahl, T. A., Corum, Z. P. & Jones, K. E. Geomorphic evolution of a levee setback in a gravel-sand channel in Washington State. J. Hydraul. Eng. 151, 05024003 (2025).
ArticleGoogle Scholar
Cluer, B. & Thorne, C. A stream evolution model integrating habitat and ecosystem benefits. River Res. Appl. 30, 135–154 (2014).
ArticleGoogle Scholar
Graf, W. L. Damage control: restoring the physical integrity of America’s rivers. Ann. Assoc. Am. Geogr. 91, 1–27 (2001).
ArticleGoogle Scholar
McIntosh, A. R., Greig, H. S., Warburton, H. J., Tonkin, J. D. & Febria, C. M. Ecosystem-size relationships of river populations and communities. Trends Ecol. Evol. 39, 571–584 (2024).
ArticlePubMedGoogle Scholar
Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M. & Meadows, A. W. Ecologically functional floodplains: connectivity, flow regime and scale. J. Am. Water Resour. Assoc. 46, 211–226 (2010).
ArticleGoogle Scholar
Van Looy, K. et al. The three Rs of river ecosystem resilience: resources, recruitment and refugia. River Res. Appl. 35, 107–120 (2019).
ArticleGoogle Scholar
Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change: conserving Nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).
ArticlePubMedGoogle Scholar
Langbein, W. B. & Leopold, L. B. Quasi-equilibrium states in channel morphology. Am. J. Sci. 262, 782–794 (1964).
ArticleGoogle Scholar
Wymore, A. S., Ward, A. S., Wohl, E. & Harvey, J. W. Viewing river corridors through the lens of critical zone science. Front. Water 5, 1147561 (2023).
ArticleGoogle Scholar
Castro, J. M. & Thorne, C. R. The stream evolution triangle: integrating geology, hydrology and biology. River Res. Appl. 35, 315–326 (2019).
ArticleGoogle Scholar
Hauer, C., Mandlburger, G. & Habersack, H. Hydraulically related hydro-morphological units: description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input. River Res. Appl. 25, 29–47 (2009).
ArticleGoogle Scholar
Clilverd, H. M., Thompson, J. R., Heppell, C. M., Sayer, C. D. & Axmacher, J. C. Coupled hydrological/hydraulic modelling of river restoration impacts and floodplain hydrodynamics: modelling of river restoration impacts. River Res. Appl. 32, 1927–1948 (2016).
ArticleGoogle Scholar
Wohl, E. et al. The natural sediment regime in rivers: broadening the foundation for ecosystem management. BioScience 65, 358–371 (2015).
ArticleGoogle Scholar
Davis, N. G., Mathers, K. L., Hodson, R. & Matthaei, C. D. Monthly sampling reveals seasonal fine sediment fluctuations and riverine invertebrate community responses. Sci. Total Environ. 911, 168750 (2024).
ArticleCASPubMedGoogle Scholar
Jennings, J. C., Bellmore, J. R., Armstrong, J. B. & Wisseman, R. W. Effects of process‐based floodplain restoration on aquatic macroinvertebrate production and community structure. River Res. Appl. 39, 1709–1723 (2023).
ArticleGoogle Scholar
Bellmore, J. R., Baxter, C. V., Martens, K. & Connolly, P. J. The floodplain food web mosaic: a study of its importance to salmon and steelhead with implications for their recovery. Ecol. Appl. 23, 189–207 (2013).
ArticlePubMedGoogle Scholar
Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106, 110–127 (1989).
Google Scholar
Williams, R. D. et al. Let the river erode! Enabling lateral migration increases geomorphic unit diversity. Sci. Total Environ. 715, 136817 (2020).
ArticleCASPubMedGoogle Scholar
Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).
ArticlePubMedGoogle Scholar
Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).
ArticleGoogle Scholar
DeBoer, J. A., Thoms, M. C., Delong, M. D., Parsons, M. E. & Casper, A. F. Heterogeneity of ecosystem function in an ‘Anthropocene’ river system. Anthropocene 31, 100252 (2020).
ArticleGoogle Scholar
Maasri, A. et al. Variation in macroinvertebrate community structure of functional process zones along the river continuum: new elements for the interpretation of the river ecosystem synthesis. River Res. Appl. 37, 665–674 (2021).
ArticleGoogle Scholar
Wohl, E., Lininger, K. B. & Scott, D. N. River beads as a conceptual framework for building carbon storage and resilience to extreme climate events into river management. Biogeochemistry 141, 365–383 (2018).
ArticleCASGoogle Scholar
Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).
ArticleGoogle Scholar
Bellmore, J. R. & Baxter, C. V. Effects of geomorphic process domains on river ecosystems: a comparison of floodplain and confined valley segments. River Res. Appl. 30, 617–630 (2014).
ArticleGoogle Scholar
Robinson, C. T., Tockner, K. & Ward, J. V. The fauna of dynamic riverine landscapes: fauna of riverine landscapes. Freshw. Biol. 47, 661–677 (2002).
ArticleGoogle Scholar
Armstrong, J. D., Kemp, P. S., Kennedy, G. J. A., Ladle, M. & Milner, N. J. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fish. Res. 62, 143–170 (2003).
ArticleGoogle Scholar
Ward, J. V. Riverine landscapes: biodiversity patterns, disturbance regimes and aquatic conservation. Biol. Conserv. 83, 269–278 (1998).
ArticleGoogle Scholar
Gray, D., Scarsbrook, M. R. & Harding, J. S. Spatial biodiversity patterns in a large New Zealand braided river. N. Z. J. Mar. Freshw. Res. 40, 631–642 (2006).
ArticleGoogle Scholar
Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M. & Stoffel, M. Factors controlling large-wood transport in a mountain river. Geomorphology 272, 21–31 (2016).
ArticleGoogle Scholar
Wyżga, B., Zawiejska, J., Mikuś, P. & Kaczka, R. J. Contrasting patterns of wood storage in mountain watercourses narrower and wider than the height of riparian trees. Geomorphology 228, 275–285 (2015).
ArticleGoogle Scholar
Wohl, E., Dwire, K., Sutfin, N., Polvi, L. & Bazan, R. Mechanisms of carbon storage in mountainous headwater rivers. Nat. Commun. 3, 1263 (2012).
ArticlePubMedGoogle Scholar
Guiney, M. R. & Lininger, K. B. Disturbance and valley confinement: controls on floodplain large wood and organic matter jam deposition in the Colorado Front Range, USA. Earth Surf. Process. Landf. 47, 1371–1389 (2022).
ArticleGoogle Scholar
Hauer, F. R. et al. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Sci. Adv. 2, e1600026 (2016).
ArticlePubMedPubMed CentralGoogle Scholar
Wohl, E. et al. Rediscovering, reevaluating and restoring lost river-wetland corridors. Front. Earth Sci. 9, 653623 (2021).
ArticleGoogle Scholar
Hu, S., Niu, Z., Chen, Y., Li, L. & Zhang, H. Global wetlands: potential distribution, wetland loss and status. Sci. Total Environ. 586, 319–327 (2017).
ArticleCASPubMedGoogle Scholar
Steiger, J., Tabacchi, E., Dufour, S., Corenblit, D. & Peiry, J.-L. Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res. Appl. 21, 719–737 (2005).
ArticleGoogle Scholar
Datry, T., Corti, R., Belletti, B. & Piégay, H. Ground-dwelling arthropod communities across braided river landscape mosaics: a Mediterranean perspective. Freshw. Biol. 59, 1308–1322 (2014).
ArticleGoogle Scholar
Klaar, M. J., Maddock, I. & Milner, A. M. The development of hydraulic and geomorphic complexity in recently formed streams in Glacier Bay National Park, Alaska. River Res. Appl. 25, 1331–1338 (2009).
ArticleGoogle Scholar
Wyrick, J. R. & Pasternack, G. B. Geospatial organization of fluvial landforms in a gravel-cobble river: beyond the riffle-pool couplet. Geomorphology 213, 48–65 (2014).
ArticleGoogle Scholar
Arscott, D. B., Tockner, K., van der Nat, D. & Ward, J. V. Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems 5, 0802–0814 (2002).
ArticleGoogle Scholar
Richards, K., Brasington, J. & Hughes, F. Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshw. Biol. 47, 559–579 (2002).
ArticleGoogle Scholar
Malard, F., Uehlinger, U., Zah, R. & Tockner, K. Flood-pulse and riverscape dynamics in a braided glacial river. Ecology 87, 704–716 (2006).
ArticlePubMedGoogle Scholar
Van Der Nat, D., Tockner, K., Edwards, P. J., Ward, J. V. & Gurnell, A. M. Habitat change in braided flood plains (Tagliamento, NE-Italy). Freshw. Biol. 48, 1799–1812 (2003).
ArticleGoogle Scholar
Whited, D. C. et al. Climate, hydrologic disturbance and succession: drivers of floodplain pattern. Ecology 88, 940–953 (2007).
ArticlePubMedGoogle Scholar
Stanford, J. A., Lorang, M. S. & Hauer, F. R. The shifting habitat mosaic of river ecosystems. SIL Proc. 1922–2010 29, 123–136 (2005).
ArticleGoogle Scholar
Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30, 492–507 (2002).
ArticlePubMedGoogle Scholar
Palmer, M. & Ruhi, A. Linkages between flow regime, biota and ecosystem processes: implications for river restoration. Science 365, eaaw2087 (2019).
ArticleCASPubMedGoogle Scholar
Tonkin, J. D. et al. Designing flow regimes to support entire river ecosystems. Front. Ecol. Environ. 19, 326–333 (2021).
ArticleGoogle Scholar
McMullen, L. E., De Leenheer, P., Tonkin, J. D. & Lytle, D. A. High mortality and enhanced recovery: modelling the countervailing effects of disturbance on population dynamics. Ecol. Lett. 20, 1566–1575 (2017).
ArticlePubMedGoogle Scholar
Lytle, D. A., Bogan, M. T. & Finn, D. S. Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proc. R. Soc. B Biol. Sci. 275, 453–462 (2008).
ArticleGoogle Scholar
Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).
ArticlePubMedGoogle Scholar
Datry, T. et al. Causes, responses and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2023).
ArticleGoogle Scholar
Mims, M. C. & Olden, J. D. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93, 35–45 (2012).
ArticlePubMedGoogle Scholar
Tonkin, J. D., Bogan, M. T., Bonada, N., Rios‐Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).
ArticlePubMedGoogle Scholar
Bogan, M. T. & Lytle, D. A. Seasonal flow variation allows ‘time‐sharing’ by disparate aquatic insect communities in montane desert streams. Freshw. Biol. 52, 290–304 (2007).
ArticleGoogle Scholar
Bonada, N., Rieradevall, M., Prat, N. & Resh, V. H. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. J. North Am. Benthol. Soc. 25, 32–43 (2006).
ArticleGoogle Scholar
Riebe, C. S., Sklar, L. S., Overstreet, B. T. & Wooster, J. K. Optimal reproduction in salmon spawning substrates linked to grain size and fish length. Water Resour. Res. 50, 898–918 (2014).
ArticleGoogle Scholar
Kemp, P., Sear, D., Collins, A., Naden, P. & Jones, I. The impacts of fine sediment on riverine fish. Hydrol. Process. 25, 1800–1821 (2011).
ArticleGoogle Scholar
Rossi, G. J. et al. Foodscapes for salmon and other mobile consumers in river networks. BioScience 74, 586–600 (2024).
ArticleGoogle Scholar
Townsend, C. R. The patch dynamics concept of stream community ecology. J. North Am. Benthol. Soc. 8, 36–50 (1989).
ArticleGoogle Scholar
Meitzen, K. M. Lateral channel migration effects on riparian forest structure and composition, Congaree River, South Carolina, USA. Wetlands 29, 465–475 (2009).
ArticleGoogle Scholar
Tockner, K., Malard, F. & Ward, J. V. An extension of the flood pulse concept. Hydrol. Process. 14, 2861–2883 (2000).
3.0.CO;2-F" data-track-item_id="10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2F1099-1085%28200011%2F12%2914%3A16%2F17%3C2861%3A%3AAID-HYP124%3E3.0.CO%3B2-F" aria-label="Article reference 93" data-doi="10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F">ArticleGoogle Scholar
Gurnell, A. Plants as river system engineers. Earth Surf. Process. Landf. 39, 4–25 (2014).
ArticleGoogle Scholar
Stecca, G., Hicks, D. M., Measures, R. & Henderson, R. Numerical modeling prediction of vegetation trajectories under different flow regimes in New Zealand braided rivers. J. Geophys. Res. Earth Surf. 128,1–23 (2023).
ArticleGoogle Scholar
Bertoldi, W., Drake, N. A. & Gurnell, A. M. Interactions between river flows and colonizing vegetation on a braided river: exploring spatial and temporal dynamics in riparian vegetation cover using satellite data. Earth Surf. Process. Landf. 36, 1474–1486 (2011).
ArticleGoogle Scholar
van Oorschot, M., Kleinhans, M., Geerling, G. & Middelkoop, H. Distinct patterns of interaction between vegetation and morphodynamics. Earth Surf. Process. Landf. 41, 791–808 (2016).
ArticleGoogle Scholar
Corenblit, D., Tabacchi, E., Steiger, J. & Gurnell, A. M. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci. Rev. 84, 56–86 (2007).
ArticleGoogle Scholar
Caruso, B. S., Edmondson, L. & Pithie, C. Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand. Environ. Manage. 52, 1–18 (2013).
ArticlePubMedGoogle Scholar
Harris, H. A. L., Tonkin, J. D. & McIntosh, A. R. in Resilience and Riverine Landscapes 157–175 (Elsevier, 2024).
Winemiller, K. O., Flecker, A. S. & Hoeinghaus, D. J. Patch dynamics and environmental heterogeneity in lotic ecosystems. J. North Am. Benthol. Soc. 29, 84–99 (2010).
ArticleGoogle Scholar
Ward, J. V. The four-dimensional nature of lotic ecosystems. J. North Am. Benthol. Soc. 8, 2–8 (1989).
ArticleGoogle Scholar
Thorp, J. H., Thoms, M. C. & Delong, M. D. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22, 123–147 (2006).
ArticleGoogle Scholar
Patrick, C. J. et al. The application of metacommunity theory to the management of riverine ecosystems. WIREs Water 8, e1557 (2021).
ArticleGoogle Scholar
Fernandes, C. C. Lateral migration of fishes in Amazon floodplains. Ecol. Freshw. Fish 6, 36–44 (1997).
ArticleGoogle Scholar
Li, Z. et al. Seasonal variation in the metacommunity structure of benthic macroinvertebrates in a large river-connected floodplain lake. Ecol. Indic. 136, 108662 (2022).
ArticleGoogle Scholar
Seliger, C. & Zeiringer, B. in Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future (eds Schmutz, S. & Sendzimir, J.) 171–186 (Springer, 2018).
Stanford, J. A. & Ward, J. V. The hyporheic habitat of river ecosystems. Nature 335, 64–66 (1988).
ArticleGoogle Scholar
Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).
ArticlePubMedGoogle Scholar
Cleveland, C. C., Neff, J. C., Townsend, A. R. & Hood, E. Composition, dynamics and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7, 175–285 (2004).
Langhans, S. D., Tiegs, S. D., Gessner, M. O. & Tockner, K. Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquat. Sci. 70, 337–346 (2008).
ArticleGoogle Scholar
Wohl, E. An integrative conceptualization of floodplain storage. Rev. Geophys. 59, e2020RG000724 (2021).
ArticleGoogle Scholar
Datry, T., Larned, S. T. & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. BioScience 64, 229–235 (2014).
ArticleGoogle Scholar
Von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Glob. Biogeochem. Cycles 33, 1251–1263 (2019).
ArticleGoogle Scholar
Price, A. N. et al. Biogeochemical and community ecology responses to the wetting of non-perennial streams. Nat. Water 2, 815–826 (2024).
ArticleGoogle Scholar
Larsen, S. et al. Flooding and hydrologic connectivity modulate community assembly in a dynamic river-floodplain ecosystem. PLoS ONE 14, e0213227 (2019).
ArticleCASPubMedPubMed CentralGoogle Scholar
Moran, P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291 (1953).
ArticleGoogle Scholar
Langhans, S. D., Tiegs, S. D., Uehlinger, U. & Tockner, K. Environmental heterogeneity controls organic-matter dynamics in river-floodplain ecosystems. Pol. J. Ecol. 54, 675–680 (2006).
Google Scholar
Thomaz, S. M., Bini, L. M. & Bozelli, R. L. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579, 1–13 (2007).
ArticleGoogle Scholar
Holgerson, M. A. et al. Floodplains provide important amphibian habitat despite multiple ecological threats. Ecosphere 10, e02853 (2019).
ArticleGoogle Scholar
Paetzold, A., Yoshimura, C. & Tockner, K. Riparian arthropod responses to flow regulation and river channelization. J. Appl. Ecol. 45, 894–903 (2008).
ArticleGoogle Scholar
Kennedy, T. L. & Turner, T. F. River channelization reduces nutrient flow and macroinvertebrate diversity at the aquatic terrestrial transition zone. Ecosphere 2, 1–13 (2011).
ArticleCASGoogle Scholar
Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).
ArticlePubMedPubMed CentralGoogle Scholar
Baxter, C. V., Fausch, K. D. & Carl Saunders, W. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones: prey subsidies link stream and riparian food webs. Freshw. Biol. 50, 201–220 (2005).
ArticleGoogle Scholar
Nakano, S., Miyasaka, H. & Kuhara, N. Terrestrial–aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80, 2435–2441 (1999).
Google Scholar
Rooney, N., McCann, K. S. & Moore, J. C. A landscape theory for food web architecture. Ecol. Lett. 11, 867–881 (2008).
ArticlePubMedGoogle Scholar
Bellmore, J. R., Baxter, C. V. & Connolly, P. J. Spatial complexity reduces interaction strengths in the meta‐food web of a river floodplain mosaic. Ecology 96, 274–283 (2015).
ArticlePubMedGoogle Scholar
McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).
ArticleCASGoogle Scholar
Jacquet, C., Carraro, L. & Altermatt, F. Meta‐ecosystem dynamics drive the spatial distribution of functional groups in river networks. Oikos 2022, e09372 (2022).
ArticleGoogle Scholar
Paetzold, A., Schubert, C. J. & Tockner, K. Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic Insects. Ecosystems 8, 748–759 (2005).
ArticleGoogle Scholar
Tockner, K., Paetzold, A., Karaus, U., Claret, C. & Zettel, J. in Braided Rivers (eds Sambrook Smith, G. H. et al.) 339–359 (Blackwell, 2006).
Trapp, J. R., Beier, P., Mack, C., Parsons, D. R. & Paquet, P. C. Wolf, Canis lupus, den site selection in the Rocky Mountains. Can. Field Nat. 122, 49–56 (2008).
ArticleGoogle Scholar
Pierce, R. Regional patterns of migration in the Banded Dotterel (Charadrius bicintus). Notornis 46, 101–122 (1999).
Google Scholar
Caruso, B. S. Project River Recovery: restoration of braided gravel-bed river habitat in New Zealand’s high country. Environ. Manage. 37, 840–861 (2006).
ArticlePubMedGoogle Scholar
Dudgeon, D. Conservation of freshwater biodiversity in Oriental Asia: constraints, conflicts and challenges to science and sustainability. Limnology 1, 237–243 (2000).
ArticleGoogle Scholar
Tonkin, J. D. in Encyclopedia of Inland Waters (ed. Poff, L. N.) 653–664 (Elsevier, 2022).
Poff, N. L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 63, 1011–1021 (2018).
ArticleGoogle Scholar
Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).
ArticleCASGoogle Scholar
Ellis, P. W. et al. The principles of natural climate solutions. Nat. Commun. 15, 547 (2024).
ArticleCASPubMedPubMed CentralGoogle Scholar
Scott, D. N. & Wohl, E. Geomorphology and climate interact to control organic carbon stock and age in mountain river valley bottoms. Earth Surf. Process. Landf. 45, 1911–1925 (2020).
ArticleCASGoogle Scholar
Sutfin, N. A., Wohl, E., Fegel, T., Day, N. & Lynch, L. Logjams and channel morphology influence sediment storage, transformation of organic matter, and carbon storage within mountain stream corridors. Water Resour. Res. 57, e2020WR028046 (2021).
ArticleCASGoogle Scholar
Download references
Acknowledgements
C.L.M. was supported by a University of Otago Master’s Research Scholarship and a University of Otago Postgraduate Writing Bursary. J.D.T. is supported by a Rutherford Discovery Fellowship administered by the Royal Society Te Apārangi (RDF-18-UOC-007), and Te Pūnaha Matatini, a Centre of Research Excellence funded by the Tertiary Education Commission, New Zealand.
Author information
Authors and Affiliations
Department of Zoology, University of Otago, Dunedin, New Zealand
Christina L. McCabe & Christoph D. Matthaei
School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
Christina L. McCabe & Jonathan D. Tonkin
Te Pūnaha Matatini Centre of Research Excellence, University of Canterbury, Christchurch, New Zealand
Christina L. McCabe & Jonathan D. Tonkin
Authors
Christina L. McCabe
View author publications
You can also search for this author inPubMedGoogle Scholar
2. Christoph D. Matthaei
View author publications
You can also search for this author inPubMedGoogle Scholar
3. Jonathan D. Tonkin
View author publications
You can also search for this author inPubMedGoogle Scholar
Corresponding authors
Correspondence to Christina L. McCabe or Jonathan D. Tonkin.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Water thanks Ellen Wohl and James Bellmore for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
McCabe, C.L., Matthaei, C.D. & Tonkin, J.D. The ecological benefits of more room for rivers. Nat Water (2025). https://doi.org/10.1038/s44221-025-00403-0
Download citation
Received:14 March 2024
Accepted:22 January 2025
Published:21 March 2025
DOI:https://doi.org/10.1038/s44221-025-00403-0
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative