Abstract
In an increasingly urbanized world, urban biodiversity is people’s primary contact with nature. However, as cities expand and densify, urban green and blue spaces and their biodiversity are under pressure, risking declines in urban liveability. This Review discusses the benefits of urban biodiversity and the multiple challenges it faces, and identifies opportunities and pathways towards developing sustainable, biodiverse cities for both humans and nature. The substantial biological richness that urban areas can harbour helps to mitigate environmental pressures, address and adapt to climate change, and benefits human health and well-being. However, urban biodiversity is challenged by competition for space, human pressures and the declining engagement of urban residents with nature. Understanding the underlying mechanisms of both the benefits and challenges of urban biodiversity informs efforts to create and maintain high-quality urban blue–green infrastructure. Biodiversity-sensitive and socially inclusive urban governance and urban planning are key to developing biodiverse, green cities. Urban policies should move towards cross-sectional approaches that coordinate planning for biodiversity and green spaces with sectors such as health, education, urban planning and design. Developing cities as shared environments for humans and nature contributes to global biodiversity conservation and offers solutions to the social and environmental challenges increasingly faced by cities.
Key points
Although urban growth threatens biodiversity, urban areas can also contribute to biodiversity conservation.
International policies aim to relieve the pressures that urban densification and expansion exert on green and blue spaces and their biodiversity.
Promoting urban biodiversity supports climate-change mitigation and adaptation, enhances human health and well-being, and enables the engagement of people with nature.
Implementing urban blue–green infrastructure is crucial for enhancing biodiversity, ecosystem services and environmental justice in cities.
Biodiversity-sensitive design and management combined with inclusive governance are essential to developing cities as shared spaces for both humans and nature.
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Change institution
Buy or subscribe
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Urban biodiversity.
Fig. 2: Benefits of, and challenges to, urban biodiversity.
Fig. 3: Blue–green urban infrastructure to enhance biodiversity.
Fig. 4: Multifunctionality of urban green spaces, such as community gardens, public parks and streetscapes.
References
World Urbanization Prospects. The 2018 Revision Vol. 12 (United Nations Department of Economic and Social Affairs, 2019).
Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 537 (2020).
ArticleCASGoogle Scholar
Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBEShttps://zenodo.org/record/5657041 (2019).
Elmqvist, T. et al. (eds) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (Springer, 2013).
McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).
ArticleGoogle Scholar
Simkin, R. D., Seto, K. C., Mcdonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 119, e2117297119 (2022).
ArticleCASGoogle Scholar
Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Change Biol. 26, 1196–1211 (2020).
ArticleGoogle Scholar
van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).
ArticleGoogle Scholar
Kowarik, I. Urban biodiversity, ecosystems and the city. Insights from 50 years of the Berlin School of urban ecology. Landsc. Urban. Plan. 240, 104877 (2023).
ArticleGoogle Scholar
Sukopp, H. Die Großstadt als Gegenstand ökologischer Forschung. Schr. Vereins Verbreit. Naturwissenschaft. Kenntnisse Wien. 113, 90–140 (1973).
Google Scholar
Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).
ArticleGoogle Scholar
McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
ArticleGoogle Scholar
Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).
ArticleCASGoogle Scholar
Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).
ArticleGoogle Scholar
Lepczyk, C. A., Aronson, M. F. & La Sorte, F. A. Cities as sanctuaries. Front. Ecol. Environ. 21, 251–259 (2023).
ArticleGoogle Scholar
Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban. Plan. 189, 320–334 (2019).
ArticleGoogle Scholar
Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).
ArticleGoogle Scholar
Kühn, I., Brandl, R. & Klotz, S. The flora of German cities is naturally species rich. Evol. Ecol. Res. 6, 749–764 (2004).
Google Scholar
Spotswood, E. N. et al. The biological deserts fallacy: cities in their landscapes contribute more than we think to regional biodiversity. BioScience 71, 148–160 (2021).
ArticleGoogle Scholar
Hahs, A. K. et al. A global synthesis of plant extinction rates in urban areas. Ecol. Lett. 12, 1165–1173 (2009).
ArticleGoogle Scholar
Kowarik, I. & von der Lippe, M. Plant population success across urban ecosystems: a framework to inform biodiversity conservation in cities. J. Appl. Ecol. 55, 2354–2361 (2018).
ArticleGoogle Scholar
Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).
ArticleGoogle Scholar
Kleinschroth, F. et al. Global disparities in urban green space use during the COVID-19 pandemic from a systematic review. Nat. Cities 1, 136–149 (2024).
ArticleGoogle Scholar
Knapp, S. et al. A research agenda for urban biodiversity in the global extinction crisis. BioScience 71, 268–279 (2021).
ArticleGoogle Scholar
Rega-Brodsky, C. C. et al. Urban biodiversity: state of the science and future directions. Urban Ecosyst. 25, 1083–1096 (2022).
ArticleGoogle Scholar
Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).
ArticleGoogle Scholar
Soga, M. & Gaston, K. J. Do people who experience more nature act more to protect it? A meta-analysis. Biol. Conserv. 289, 110417 (2024).
ArticleGoogle Scholar
Haaland, C. & Konijnendijk van den Bosch, C. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green 14, 760–771 (2015).
ArticleGoogle Scholar
Conference of the Parties to the Convention on Biological Diversity (COP 15). Kunming–Montreal Global Biodiversity Framework. Convention on Biological Diversityhttps://www.cbd.int/gbf (2022).
McDonnell, M. J. & Hahs, A. K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landsc. Ecol. 23, 1143–1155 (2008).
ArticleGoogle Scholar
The World’s Cities in 2016. United Nationshttps://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf (2016).
Global Biodiversity Outlook 3. Convention on Biological Diversityhttps://www.cbd.int/sites/default/files/2020-09/GBO3-Summary-final-en-min.pdf (2010).
Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol. Lett. 11, 1054–1064 (2008).
ArticleGoogle Scholar
La Sorte, F. A. et al. The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization. Divers. Distrib. 24, 928–938 (2018).
ArticleGoogle Scholar
Nilon, C. H. & Aronson, M. F. J. (eds) Routledge Handbook of Urban Biodiversity (Routledge, 2023).
Kendal, D. et al. City-size bias in knowledge on the effects of urban nature on people and biodiversity. Environ. Res. Lett. 15, 124035 (2020).
ArticleGoogle Scholar
Shackleton, C. M. in Urban Ecology in the Global South (eds Shackleton, C. M., Cilliers, S. S., Davoren, E. & du Toit, M. J.) 203–226 (Springer International, 2021).
Awoyemi, A. G. & Ibáñez-Álamo, J. D. Status of urban ecology in Africa: a systematic review. Landsc. Urban. Plan. 233, 104707 (2023).
ArticleGoogle Scholar
Díaz, S. et al. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).
ArticleGoogle Scholar
Chen, C. et al. Incorporating local ecological knowledge into urban riparian restoration in a mountainous region of Southwest China. Urban For. Urban Green 20, 140–151 (2016).
ArticleGoogle Scholar
Yli-Pelkonen, V. & Kohl, J. The role of local ecological knowledge in sustainable urban planning: perspectives from Finland. Sustain. Sci. Pract. Policy 1, 3–14 (2005).
Google Scholar
Lam, D. P. M. et al. Indigenous and local knowledge in sustainability transformations research: a literature review. Ecol. Soc. 25, 3 (2020).
ArticleGoogle Scholar
McDonnell, M. J. & Hahs, A. K. Adaptation and adaptedness of organisms to urban environments. Annu. Rev. Ecol. Evol. Syst. 46, 261–280 (2015).
ArticleGoogle Scholar
Grimm, N. B., Grove, J. G., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems: urban ecological systems present multiple challenges to ecologists — pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory. BioScience 50, 571–584 (2000).
ArticleGoogle Scholar
Pickett, S. T. A. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Evol. Syst. 32, 127–157 (2001).
ArticleGoogle Scholar
Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).
ArticleGoogle Scholar
Fairbairn, A. J. et al. Urban biodiversity is affected by human-designed features of public squares. Nat. Cities 1, 706–715 (2024).
ArticleGoogle Scholar
Hahs, A. K. et al. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nat. Commun. 14, 4751 (2023).
ArticleCASGoogle Scholar
Kendal, D., Williams, K. J. H. & Williams, N. S. G. Plant traits link people’s plant preferences to the composition of their gardens. Landsc. Urban Plan. 105, 34–42 (2012).
ArticleGoogle Scholar
Roman, L. A. et al. Human and biophysical legacies shape contemporary urban forests: a literature synthesis. Urban For. Urban Green 31, 157–168 (2018).
ArticleGoogle Scholar
Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).
ArticleGoogle Scholar
Alberti, M. & Wang, T. Detecting patterns of vertebrate biodiversity across the multidimensional urban landscape. Ecol. Lett. 25, 1027–1045 (2022).
ArticleGoogle Scholar
Cadenasso, M. L., Pickett, S. T. A. & Grove, J. M. Dimensions of ecosystem complexity: heterogeneity, connectivity, and history. Ecol. Complex. 3, 1–12 (2006).
ArticleGoogle Scholar
McPhearson, T. et al. A social–ecological–technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).
ArticleGoogle Scholar
Frantzeskaki, N. et al. A transformative shift in urban ecology toward a more active and relevant future for the field and for cities. Ambio 53, 871–889 (2024).
ArticleGoogle Scholar
McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).
ArticleGoogle Scholar
Müller, N. & Werner, P. A review on the work of German urban biodiversity networks — from national to international activities. Urban Ecosyst. 27, 2021–2036 (2024).
ArticleGoogle Scholar
Toledo-Garibaldi, M., Puric-Mladenovic, D. & Smith, S. M. Urban biotope classification incorporates urban forest and green infrastructure for improved environmental land-use planning in Mexico City. Urban Ecosyst. 26, 323–336 (2023).
ArticleGoogle Scholar
Hassan, R. et al. Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group. Millennium Ecosystem Assessment Series (Island Press, 2005).
Leal Filho, W., Echevarria Icaza, L., Neht, A., Klavins, M. & Morgan, E. A. Coping with the impacts of urban heat islands. A literature-based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 171, 1140–1149 (2018).
ArticleGoogle Scholar
Besser, L. M. & Lovasi, G. S. in Nature-Based Solutions for Cities (eds McPhearson, T. et al.) 167–191 (Edward Elgar Publishing, 2023).
Kabisch, N., Basu, S., van den Bosch, M., Bratman, G. N. & Masztalerz, O. in Nature-Based Solutions for Cities (eds McPhearson, T. et al.) 192–212 (Edward Elgar Publishing, 2023).
Yang, B. Y. et al. Greenspace and human health: an umbrella review. Innovation 2, 100164 (2021).
Google Scholar
Haase, D. & Gaeva, D. Allotments for all? Social–environmental values of urban gardens for gardeners and the public in cities: the example of Berlin, Germany. People Nat. 5, 1207–1219 (2023).
ArticleGoogle Scholar
Lyytimäki, J. & Sipilä, M. Hopping on one leg—the challenge of ecosystem disservices for urban green management. Urban For. Urban Green. 8, 309–315 (2009).
ArticleGoogle Scholar
von Döhren, P. & Haase, D. Geospatial assessment of urban ecosystem disservices: an example of poisonous urban trees in Berlin, Germany. Urban For. Urban Green 67, 127440 (2022).
ArticleGoogle Scholar
Hegetschweiler, K. T. et al. Linking demand and supply factors in identifying cultural ecosystem services of urban green infrastructures: a review of European studies. Urban For. Urban Green 21, 48–59 (2017).
ArticleGoogle Scholar
De Lacy, P. & Shackleton, C. Aesthetic and spiritual ecosystem services provided by urban sacred sites. Sustainability 9, 1628 (2017).
ArticleGoogle Scholar
Gopal, D., von der Lippe, M. & Kowarik, I. Sacred sites as habitats of culturally important plant species in an Indian megacity. Urban For. Urban Green 32, 113–122 (2018).
ArticleGoogle Scholar
Schwarz, N. et al. Understanding biodiversity–ecosystem service relationships in urban areas: a comprehensive literature review. Ecosyst. Serv. 27, 161–171 (2017).
ArticleGoogle Scholar
Lundholm, J. T. Green roof plant species diversity improves ecosystem multifunctionality. J. Appl. Ecol. 52, 726–734 (2015).
ArticleCASGoogle Scholar
Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 7, 113–126 (2023).
ArticleGoogle Scholar
Schittko, C. et al. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. 110, 916–934 (2022).
ArticleCASGoogle Scholar
Potgieter, L. J. et al. Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biol. Invas. 19, 3571–3588 (2017).
ArticleGoogle Scholar
Schlaepfer, M. A., Guinaudeau, B. P., Martin, P. & Wyler, N. Quantifying the contributions of native and non-native trees to a city’s biodiversity and ecosystem services. Urban For. Urban Green 56, 126861 (2020).
ArticleGoogle Scholar
Guillen-Cruz, G., Rodríguez-Sánchez, A. L., Fernández-Luqueño, F. & Flores-Rentería, D. Influence of vegetation type on the ecosystem services provided by urban green areas in an arid zone of northern Mexico. Urban For. Urban Green 62, 127135 (2021).
ArticleGoogle Scholar
Botzat, A., Fischer, L. K. & Kowarik, I. Unexploited opportunities in understanding liveable and biodiverse cities. A review on urban biodiversity perception and valuation. Glob. Environ. Change 39, 220–233 (2016).
ArticleGoogle Scholar
Fischer, L. K. et al. Beyond green: broad support for biodiversity in multicultural European cities. Glob. Environ. Change 49, 35–45 (2018).
ArticleGoogle Scholar
Dallimer, M. et al. Biodiversity and the feel-good factor: understanding associations between self-reported human well-being and species richness. BioScience 62, 47–55 (2012).
ArticleGoogle Scholar
Methorst, J. et al. The importance of species diversity for human well-being in Europe. Ecol. Econ. 181, 106917 (2021).
ArticleGoogle Scholar
Nawrath, M., Elsey, H., Rijal, M. L. & Dallimer, M. Greenspaces and human well-being: perspectives from a rapidly urbanising low-income country. Environments 9, 148 (2022).
ArticleGoogle Scholar
Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).
ArticleGoogle Scholar
Chisholm, R. A. et al. Two centuries of biodiversity discovery and loss in Singapore. Proc. Natl. Acad. Sci. USA 120, e2309034120 (2023).
ArticleCASGoogle Scholar
Pauchard, A., Aguayo, M., Peña, E. & Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 127, 272–281 (2006).
ArticleGoogle Scholar
Adegun, O. B., Ikudayisi, A. E., Morakinyo, T. E. & Olusoga, O. O. Urban green infrastructure in Nigeria: a review. Sci. Afr. 14, e01044 (2021).
Google Scholar
Anujan, K. et al. Beyond the metropolis: street tree communities and resident perceptions on ecosystem services in small urban centers in India. J. Urban. Ecol. 10, juae004 (2024).
ArticleGoogle Scholar
Guilherme, F., Vicente, J. R., Carretero, M. A. & Farinha-Marques, P. Mapping multigroup responses to land cover legacy for urban biodiversity conservation. Biol. Conserv. 291, 110508 (2024).
ArticleGoogle Scholar
Li, M., Verburg, P. H. & van Vliet, J. Global trends and local variations in land take per person. Landsc. Urban Plan. 218, 104308 (2022).
ArticleGoogle Scholar
Soga, M., Yamaura, Y., Koike, S. & Gaston, K. J. Land sharing vs. land sparing: does the compact city reconcile urban development and biodiversity conservation? J. Appl. Ecol. 51, 1378–1386 (2014).
ArticleGoogle Scholar
Zoomers, A., van Noorloos, F., Otsuki, K., Steel, G. & van Westen, G. The rush for land in an urbanizing world: from land grabbing toward developing safe, resilient, and sustainable cities and landscapes. World Dev. 92, 242–252 (2017).
ArticleGoogle Scholar
Qian, Y., Zhou, W., Yu, W. & Pickett, S. T. A. Quantifying spatiotemporal pattern of urban greenspace: new insights from high resolution data. Landsc. Ecol. 30, 1165–1173 (2015).
ArticleGoogle Scholar
Angold, P. G. et al. Biodiversity in urban habitat patches. Sci. Total. Environ. 360, 196–204 (2006).
ArticleCASGoogle Scholar
Yang, L., Zhao, S. & Liu, S. A global analysis of urbanization effects on amphibian richness: patterns and drivers. Glob. Environ. Change 73, 102476 (2022).
ArticleGoogle Scholar
Ramalho, C. E., Laliberté, E., Poot, P. & Hobbs, R. J. Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. Ecology 95, 2466–2478 (2014).
ArticleGoogle Scholar
Theodorou, P. et al. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci. Rep. 10, 21756 (2020).
ArticleCASGoogle Scholar
Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731 (2020).
ArticleGoogle Scholar
Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).
ArticleCASGoogle Scholar
Knapp, S., Kühn, I., Stolle, J. & Klotz, S. Changes in the functional composition of a Central European urban flora over three centuries. Persp. Plant Ecol. Evol. Syst. 12, 235–244 (2010).
ArticleGoogle Scholar
Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).
ArticleGoogle Scholar
Ancillotto, L. et al. No city for wetland species: habitat associations affect mammal persistence in urban areas. Proc. R. Soc. B 291, 20240079 (2024).
ArticleGoogle Scholar
Teurlincx, S. et al. Towards restoring urban waters: understanding the main pressures. Curr. Opin. Environ. Sustain. 36, 49–58 (2019).
ArticleGoogle Scholar
Kalcounis-Rueppell, M. C., Payne, V. H., Huff, S. R. & Boyko, A. L. Effects of wastewater treatment plant effluent on bat foraging ecology in an urban stream system. Biol. Conserv. 138, 120–130 (2007).
ArticleGoogle Scholar
Kleinschroth, F. et al. Living with floating vegetation invasions. Ambio 50, 125–137 (2020).
ArticleGoogle Scholar
Sarah, P. & Zhevelev, H. M. Effect of visitors’ pressure on soil and vegetation in several different micro-environments in urban parks in Tel Aviv. Landsc. Urban Plan. 83, 284–293 (2007).
ArticleGoogle Scholar
Hu, X. & Lima, M. F. The association between maintenance and biodiversity in urban green spaces: a review. Landsc. Urban Plan. 251, 105153 (2024).
ArticleGoogle Scholar
Aguilera, G., Ekroos, J., Persson, A. S., Pettersson, L. B. & Öckinger, E. Intensive management reduces butterfly diversity over time in urban green spaces. Urban Ecosyst. 22, 335–344 (2019).
ArticleGoogle Scholar
Varga-Szilay, Z., Fetykó, K. G., Szövényi, G. & Pozsgai, G. Bridging biodiversity and gardening: unravelling the interplay of socio-demographic factors, garden practices, and garden characteristics. Urban For. Urban Green 97, 128367 (2024).
ArticleGoogle Scholar
Francis, C. D., Ortega, C. P. & Cruz, A. Noise pollution changes avian communities and species interactions. Curr. Biol. 19, 1415–1419 (2009).
ArticleCASGoogle Scholar
Sordello, R. et al. A plea for a worldwide development of dark infrastructure for biodiversity — practical examples and ways to go forward. Landsc. Urban Plan. 219, 104332 (2022).
ArticleGoogle Scholar
Kornreich, A., Partridge, D., Youngblood, M. & Parkins, K. Rehabilitation outcomes of bird–building collision victims in the northeastern United States. PLoS ONE 19, e0306362 (2024).
ArticleCASGoogle Scholar
Solecki, W. & Marcotullio, P. J. in Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (eds Elmqvist, T. et al.) 485–504 (Springer, 2013).
Wilby, R. L. & Perry, G. L. W. Climate change, biodiversity and the urban environment: a critical review based on London, UK. Prog. Phys. Geogr. Earth Environ. 30, 73–98 (2006).
ArticleGoogle Scholar
Haight, J. D. et al. Urbanization, climate and species traits shape mammal communities from local to continental scales. Nat. Ecol. Evol. 7, 1654–1666 (2023).
ArticleGoogle Scholar
Esperon-Rodriguez, M. et al. Climate change increases global risk to urban forests. Nat. Clim. Change 12, 950–955 (2022).
ArticleGoogle Scholar
Haase, D. & Hellwig, R. Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. Trees For. People 8, 100252 (2022).
ArticleGoogle Scholar
Raum, S. et al. Tree insect pests and pathogens: a global systematic review of their impacts in urban areas. Urban Ecosyst. 26, 587–604 (2023).
ArticleGoogle Scholar
Gaertner, M. et al. Non-native species in urban environments: patterns, processes, impacts and challenges. Biol. Invas. 19, 3461–3469 (2017).
ArticleGoogle Scholar
Gaertner, M. & Kowarik, I. in Routledge Handbook of Urban Biodiversity (eds Nilon, C. H. & Aronson, M. F. J.) 172–190 (Routledge, 2023).
Hughes, J. & Macdonald, D. W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Conserv. 157, 341–351 (2013).
ArticleGoogle Scholar
Trouwborst, A., McCormack, P. C. & Martínez Camacho, E. Domestic cats and their impacts on biodiversity: a blind spot in the application of nature conservation law. People Nat. 2, 235–250 (2020).
ArticleGoogle Scholar
Kumar Rai, P. & Singh, J. S. Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecol. Indic. 111, 106020 (2020).
ArticleGoogle Scholar
Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian Chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).
ArticleCASGoogle Scholar
Kabisch, N. & Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 122, 129–139 (2014).
ArticleGoogle Scholar
Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).
ArticleGoogle Scholar
Calderón-Argelich, A. et al. Tracing and building up environmental justice considerations in the urban ecosystem service literature: a systematic review. Landsc. Urban Plan. 214, 104130 (2021).
ArticleGoogle Scholar
Rigolon, A., Browning, M., Lee, K. & Shin, S. Access to urban green space in cities of the Global South: a systematic literature review. Urban Sci. 2, 67 (2018).
ArticleGoogle Scholar
Muratet, A., Pellegrini, P., Dufour, A.-B., Arrif, T. & Chiron, F. Perception and knowledge of plant diversity among urban park users. Landsc. Urban Plan. 137, 95–106 (2015).
ArticleGoogle Scholar
Soulsbury, C. D. & White, P. C. L. in Human–Wildlife Interactions: Turning Conflict into Coexistence (eds Frank, B., Glikman, J. A. & Marchini, S.) 107–128 (Cambridge Univ. Press, 2019).
Lin, B. B., Fuller, R. A., Bush, R., Gaston, K. J. & Shanahan, D. F. Opportunity or orientation? Who uses urban parks and why. PLoS ONE 9, e87422 (2014).
ArticleGoogle Scholar
Soga, M. & Gaston, K. The ecology of human–nature interactions. Proc. R. Soc. B 287, 20191882 (2020).
ArticleGoogle Scholar
Clayton, S. et al. Transformation of experience: toward a new relationship with nature. Conserv. Lett. 10, 645–651 (2017).
ArticleGoogle Scholar
Langhans, K. E. et al. Centring justice in conceptualizing and improving access to urban nature. People Nat. 5, 897–910 (2023).
ArticleGoogle Scholar
Waite, S., Husain, F., Scandone, B., Forsyth, E. & Piggott, H. ‘It’s not for people like (them)’: structural and cultural barriers to children and young people engaging with nature outside schooling. J. Adventure Educ. Outdoor Learn. 23, 54–73 (2023).
ArticleGoogle Scholar
Yue, Z. & Chen, J. Direct, indirect, and vicarious nature experiences collectively predict preadolescents’ self-reported nature connectedness and conservation behaviors. PeerJ 11, e15542 (2023).
ArticleGoogle Scholar
Bashan, D., Colléony, A. & Shwartz, A. Urban versus rural? The effects of residential status on species identification skills and connection to nature. People Nat. 3, 347–358 (2021).
ArticleGoogle Scholar
Whitburn, J., Linklater, W. & Abrahamse, W. Meta-analysis of human connection to nature and proenvironmental behavior. Conserv. Biol. 34, 180–193 (2020).
ArticleGoogle Scholar
Balding, M. & William, K. J. H. Plant blindness and the implications for plant conservation. Conserv. Biol. 30, 1192–1199 (2016).
ArticleGoogle Scholar
Hoyle, H., Jorgensen, A. & Hitchmough, J. D. What determines how we see nature? Perceptions of naturalness in designed urban green spaces. People Nat. 1, 167–180 (2019).
ArticleGoogle Scholar
Paul, S. & Nagendra, H. Factors influencing perceptions and use of urban nature: surveys of park visitors in Delhi. Land 6, 27 (2017).
ArticleGoogle Scholar
Otto, S. & Pensini, P. Nature-based environmental education of children: environmental knowledge and connectedness to nature, together, are related to ecological behaviour. Glob. Environ. Change 47, 88–94 (2017).
ArticleGoogle Scholar
Straka, T. M., Glahe, C., Dietrich, U., Bui, M. & Kowarik, I. From nature experience to pro-conservation action: how generational amnesia and declining nature-relatedness shape behaviour intentions of adolescents and adults. Ambiohttps://doi.org/10.1007/s13280-025-02135-7 (2025).
Löbl, I., Klausnitzer, B., Hartmann, M. & Krell, F.-T. The silent extinction of species and taxonomists — an appeal to science policymakers and legislators. Diversity 15, 1053 (2023).
ArticleGoogle Scholar
Ardoin, N. M., Bowers, A. W. & Gaillard, E. Environmental education outcomes for conservation: a systematic review. Biol. Conserv. 241, 108224 (2020).
ArticleGoogle Scholar
Bobo-Pinilla, J., Marcos-Walias, J., Delgado Iglesias, J. & Reinoso Tapia, R. Overcoming plant blindness: are the future teachers ready? J. Biol. Educ. 58, 1466–1480 (2023).
ArticleGoogle Scholar
Stroud, S. et al. The botanical education extinction and the fall of plant awareness. Ecol. Evol. 12, e9019 (2022).
ArticleGoogle Scholar
Soga, M., Gaston, K. J., Fukano, Y. & Evans, M. J. The vicious cycle of biophobia. Trends Ecol. Evol. 38, 512–520 (2023).
ArticleGoogle Scholar
Soga, M. et al. How can we mitigate against increasing biophobia among children during the extinction of experience? Biol. Conserv. 242, 108420 (2020).
ArticleGoogle Scholar
König, H. J. et al. Human–wildlife coexistence in a changing world. Conserv. Biol. 34, 786–794 (2020).
ArticleGoogle Scholar
Buijs, A. & Jacobs, M. Avoiding negativity bias: towards a positive psychology of human–wildlife relationships. Ambio 50, 281–288 (2021).
ArticleGoogle Scholar
Fisher, J. C. et al. Perceived biodiversity, sound, naturalness and safety enhance the restorative quality and wellbeing benefits of green and blue space in a neotropical city. Sci. Total Environ. 755, 143095 (2021).
ArticleCASGoogle Scholar
Ratcliffe, E., Gatersleben, B. & Sowden, P. T. Bird sounds and their contributions to perceived attention restoration and stress recovery. J. Environ. Psychol. 36, 221–228 (2013).
ArticleGoogle Scholar
Nilon, C. H. et al. Planning for the future of urban biodiversity: a global review of city-scale initiatives. BioScience 67, 332–342 (2017).
ArticleGoogle Scholar
Transforming our world: the 2030 agenda for sustainable development. United Nationshttps://sdgs.un.org/2030agenda (2015).
Girma, Y., Terefe, H., Pauleit, S. & Kindu, M. Urban green infrastructure planning in Ethiopia: the case of emerging towns of Oromia special zone surrounding Finfinne. J. Urban Manag. 8, 75–88 (2019).
ArticleGoogle Scholar
Pauleit, S., Vasquéz, A., Maruthaveeran, S., Liu, L. & Cilliers, S. S. in Urban Ecology in the Global South (eds Shackleton, C. M., Cilliers, S. S., Davoren, E. & du Toit, M. J.) 107–143 (Springer International, 2021).
Fors, H., Hagemann, F. A., Sang, A. O. & Randrup, T. B. Striving for inclusion—a systematic review of long-term participation in strategic management of urban green spaces. Front. Sustain. Cities 3, 572423 (2021).
Varshney, K. et al. Biodiverse residential development: a review of New Zealand policies and strategies for urban biodiversity. Urban For. Urban Green 94, 128276 (2024).
ArticleGoogle Scholar
Raymond, C. M. et al. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 77, 15–24 (2017).
ArticleGoogle Scholar
Dillen, S. M. E., van Vries, S., de Groenewegen, P. P. & Spreeuwenberg, P. Greenspace in urban neighbourhoods and residents’ health: adding quality to quantity. J. Epidemiol. Community Health 66, e8–e8 (2012).
ArticleGoogle Scholar
Konijnendijk, C. C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: introducing the 3–30–300 rule. J. For. Res. 34, 821–830 (2023).
ArticleGoogle Scholar
Konijnendijk, C. C. Rethinking Urban Green Spaces (Edward Elgar Publishing, 2024).
Elmqvist, T. et al. Urbanization in and for the Anthropocene. Npj Urban Sustain. 1, 1–6 (2021).
ArticleGoogle Scholar
Kowarik, I., Bartz, R., Brenck, M. & Hansjürgens, B. Ecosystem Services in the City: Protecting Health and Enhancing Quality of Life: Summary for Decision-Makers (Naturkapital Deutschland, 2017).
Nuissl, H., Haase, D., Lanzendorf, M. & Wittmer, H. Environmental impact assessment of urban land use transitions — a context-sensitive approach. Land Use Policy 26, 414–424 (2009).
ArticleGoogle Scholar
Frantzeskaki, N. & Kabisch, N. Designing a knowledge co-production operating space for urban environmental governance — lessons from Rotterdam, Netherlands and Berlin, Germany. Environ. Sci. Policy 62, 90–98 (2016).
ArticleGoogle Scholar
Pauleit, S., Hansen, R., Rall, E. L. & Rolf, W. in The Routledge Handbook of Urban Ecology (eds Nilon, C. H. & Aronson, M. F. J.) 931–942 (Routledge, 2020).
Rouse, D. C. & Bunster-Ossa, I. in Planning for Climate Change (eds Hamin Infield, E. M. et al.) 273–281 (Routledge, 2018).
Davies, C. et al. Green Infrastructure Planning and Implementation: the Status of European Green Space Planning and Implementation Based on an Analysis of Selected European City-regions (Green Surge, 2015).
Pauleit, S., Hansen, R., van Lierop, M., Rall, E. L. & Rolf, W. In Handbuch Landschaft (eds Kühne, O., Weber, F., Berr, K. & Jenal, C.) 781–794 (Springer Fachmedien, 2019).
Siehr, S. A., Sun, M. & Aranda Nucamendi, J. L. Blue–green infrastructure for climate resilience and urban multifunctionality in Chinese cities. WIREs Energy Environ. 11, e447 (2022).
ArticleGoogle Scholar
Lindley, S., Pauleit, S., Yeshitela, K., Cilliers, S. & Shackleton, C. Rethinking urban green infrastructure and ecosystem services from the perspective of sub-Saharan African cities. Landsc. Urban Plan. 180, 328–338 (2018).
ArticleGoogle Scholar
Davies, K. K., Fisher, K. T., Dickson, M. E., Thrush, S. F. & Le Heron, R. Improving ecosystem service frameworks to address wicked problems. Ecol. Soc. 20, 37 (2015).
ArticleGoogle Scholar
Zhou, L., Gong, Y., López-Carr, D. & Huang, C. A critical role of the capital green belt in constraining urban sprawl and its fragmentation measurement. Land Use Policy 141, 107148 (2024).
ArticleGoogle Scholar
Schwarze-Rodrian, M. in Nature-Based Solutions for More Sustainable Cities — A Framework Approach for Planning and Evaluation (eds Croci, E. & Lucchitta, B.) 291–300 (Emerald Publishing, 2021).
Kowarik, I. The “Green Belt Berlin”: establishing a greenway where the Berlin Wall once stood by integrating ecological, social and cultural approaches. Landsc. Urban Plan. 184, 12–22 (2019).
ArticleGoogle Scholar
Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).
ArticleGoogle Scholar
Huang, C. et al. Mapping the maximum extents of urban green spaces in 1039 cities using dense satellite images. Environ. Res. Lett. 16, 064072 (2021).
ArticleGoogle Scholar
Donati, G. F. A., Bolliger, J., Psomas, A., Maurer, M. & Bach, P. M. Reconciling cities with nature: identifying local blue–green infrastructure interventions for regional biodiversity enhancement. J. Environ. Manage. 316, 115254 (2022).
ArticleGoogle Scholar
Guimarães, L. F. et al. The challenges of urban river restoration and the proposition of a framework towards river restoration goals. J. Clean. Prod. 316, 128330 (2021).
ArticleGoogle Scholar
Chen, B., Nie, Z., Chen, Z. & Xu, B. Quantitative estimation of 21st-century urban greenspace changes in Chinese populous cities. Sci. Total. Environ. 609, 956–965 (2017).
ArticleCASGoogle Scholar
Gerner, N. V. et al. Large-scale river restoration pays off: a case study of ecosystem service valuation for the Emscher restoration generation project. Ecosyst. Serv. 30, 327–338 (2018).
ArticleGoogle Scholar
Veról, A. P. et al. River restoration integrated with sustainable urban water management for resilient cities. Sustainability 12, 4677 (2020).
ArticleGoogle Scholar
Egerer, M. & Cohen, H. Urban Agroecology: Interdisciplinary Research and Future Directions (CRC Press, 2020).
Royer, H., Yengue, J. L. & Bech, N. Urban agriculture and its biodiversity: what is it and what lives in it? Agric. Ecosyst. Environ. 346, 108342 (2023).
ArticleGoogle Scholar
Itescu, Y. & Jeschke, J. M. Assessing the conservation value of cemeteries to urban biota worldwide. Conserv. Biol. 38, e14322 (2024).
ArticleGoogle Scholar
Säumel, I., Butenschön, S. & Kreibig, N. Gardens of life: multifunctional and ecosystem services of urban cemeteries in Central Europe and beyond—historical, structural, planning, nature and heritage conservation aspects. Front. Environ. Sci. 10, 1077565 (2023).
Zannini, P. et al. Sacred natural sites and biodiversity conservation: a systematic review. Biodivers. Conserv. 30, 3747–3762 (2021).
ArticleGoogle Scholar
Delahay, R. J., Sherman, D., Soyalan, B. & Gaston, K. J. Biodiversity in residential gardens: a review of the evidence base. Biodivers. Conserv. 32, 4155–4179 (2023).
ArticleCASGoogle Scholar
Bonthoux, S., Brun, M., Di Pietro, F., Greulich, S. & Bouché-Pillon, S. How can wastelands promote biodiversity in cities? A review. Landsc. Urban Plan. 132, 79–88 (2014).
ArticleGoogle Scholar
Luo, S. & Patuano, A. Multiple ecosystem services of informal green spaces: a literature review. Urban For. Urban Green 81, 127849 (2023).
ArticleGoogle Scholar
Vega, K. A. & Küffer, C. Promoting wildflower biodiversity in dense and green cities: the important role of small vegetation patches. Urban For. Urban Green 62, 127165 (2021).
ArticleGoogle Scholar
Orsini, F., Kahane, R., Nono-Womdim, R. & Gianquinto, G. Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33, 695–720 (2013).
ArticleGoogle Scholar
Bieri, D., Joshi, N., Wende, W. & Kleinschroth, F. Increasing demand for community gardening before, during and after the COVID-19 pandemic. Urban For. Urban Green 92, 128206 (2024).
ArticleGoogle Scholar
Obi, N. I., Nwalusi, D. M., Ibem, E. O. & Okeke, O. F. Assessment of the role of greenbelts in environmental and socio-economic development of urban areas in Southeast Nigeria. Civ. Eng. Arch. 9, 545–557 (2021).
Google Scholar
Rolf, W., Pauleit, S. & Wiggering, H. A stakeholder approach, door opener for farmland and multifunctionality in urban green infrastructure. Urban For. Urban Green 40, 73–83 (2019).
ArticleGoogle Scholar
Russo, A., Escobedo, F. J., Cirella, G. T. & Zerbe, S. Edible green infrastructure: an approach and review of provisioning ecosystem services and disservices in urban environments. Agric. Ecosyst. Environ. 242, 53–66 (2017).
ArticleGoogle Scholar
Sartison, K. & Artmann, M. Edible cities—an innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities. Urban For. Urban Green 49, 126604 (2020).
ArticleGoogle Scholar
Säumel, I., Reddy, S. E. & Wachtel, T. Edible city solutions — one step further to foster social resilience through enhanced socio-cultural ecosystem services in cities. Sustainability 11, 972 (2019).
ArticleGoogle Scholar
Rupprecht, C. D. D. & Byrne, J. A. Informal urban greenspace: a typology and trilingual systematic review of its role for urban residents and trends in the literature. Urban For. Urban Green 13, 597–611 (2014).
ArticleGoogle Scholar
Palta, M. M., Grimm, N. B. & Groffman, P. M. “Accidental” urban wetlands: ecosystem functions in unexpected places. Front. Ecol. Environ. 15, 248–256 (2017).
ArticleGoogle Scholar
Kowarik, I. Urban wilderness: supply, demand, and access. Urban For. Urban Green 29, 336–347 (2018).
ArticleGoogle Scholar
Wolff, M., Haase, D., Priess, J. & Hoffmann, T. L. The role of brownfields and their revitalisation for the functional connectivity of the urban tree system in a regrowing city. Land 12, 333 (2023).
ArticleGoogle Scholar
Sikorska, D., Łaszkiewicz, E., Krauze, K. & Sikorski, P. The role of informal green spaces in reducing inequalities in urban green space availability to children and seniors. Environ. Sci. Policy 108, 144–154 (2020).
ArticleGoogle Scholar
Pedrosa, E. L. J. et al. Planning for informal urban green spaces in African cities: children’s perception and use in peri-urban areas of Luanda, Angola. Urban Sci. 5, 50 (2021).
ArticleGoogle Scholar
Ferrini, F. et al. (eds) Routledge Handbook of Urban Forestry (Routledge, 2019).
Pataki, D. E. et al. The benefits and limits of urban tree planting for environmental and human health. Front. Ecol. Evol. 9, 603757 (2021).
ArticleGoogle Scholar
Sousa-Silva, R., Duflos, M., Ordóñez, Barona, C. & Paquette, A. Keys to better planning and integrating urban tree planting initiatives. Landsc. Urban Plan. 231, 104649 (2023).
ArticleGoogle Scholar
Bauer, M. et al. BlueGreenStreets Toolbox — A & B. Multifunktionale Straßenraumgestaltung urbaner Quartiere. Multifunctional streetscape design in urban neighborhoods. HafenCity Universität Hamburghttps://doi.org/10.34712/142.27 (2022).
Love, N. L. R. et al. Diversity and structure in California’s urban forest: what over six million data points tell us about one of the world’s largest urban forests. Urban For. Urban Green 74, 127679 (2022).
ArticleGoogle Scholar
Paquette, A. et al. Praise for diversity: a functional approach to reduce risks in urban forests. Urban For. Urban Green 62, 127157 (2021).
ArticleGoogle Scholar
Berthon, K., Thomas, F. & Bekessy, S. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landsc. Urban Plan. 205, 103959 (2021).
ArticleGoogle Scholar
Sjöman, H., Morgenroth, J., Sjöman, J. D., Sæbø, A. & Kowarik, I. Diversification of the urban forest — can we afford to exclude exotic tree species? Urban For. Urban Green. 18, 237–241 (2016).
ArticleGoogle Scholar
Vogt, J. et al. Citree: a database supporting tree selection for urban areas in temperate climate. Landsc. Urban Plan. 157, 14–25 (2017).
ArticleGoogle Scholar
Böll, D. S. Trockenstressreaktionen heimischer und nicht-heimischer Stadtbaumarten in Extremsommern. LWGhttps://www.lwg.bayern.de/mam/cms06/landespflege/dateien/lwg_anpassungsstrategien_stadtgruen21_bf.pdf (2021).
Salmond, J. A. et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 15, S36 (2016).
ArticleGoogle Scholar
Guarino, R., Catalano, C. & Pasta, S. Beyond urban forests: the multiple functions and the overlooked role of semi-natural ecosystems in Mediterranean cities. Diversity 16, 447 (2024).
ArticleGoogle Scholar
Roman, L. A. et al. Beyond ‘trees are good’: disservices, management costs, and tradeoffs in urban forestry. Ambio 50, 615–630 (2021).
ArticleGoogle Scholar
Kowarik, I. & Körner, S. (eds) Wild Urban Woodlands (Springer, 2005).
Kowarik, I. et al. Emerging urban forests: opportunities for promoting the wild side of the urban green infrastructure. Sustainability 11, 10–12 (2019).
ArticleGoogle Scholar
Riley, C. B., Herms, D. A. & Gardiner, M. M. Exotic trees contribute to urban forest diversity and ecosystem services in inner-city Cleveland, OH. Urban For. Urban Green 29, 367–376 (2018).
ArticleGoogle Scholar
Trentanovi, G. et al. Integrating spontaneous urban woodlands into the green infrastructure: unexploited opportunities for urban regeneration. Land Use Policy 102, 105221 (2021).
ArticleGoogle Scholar
Blaustein, R. Urban biodiversity gains new converts: cities around the world are conserving species and restoring habitat. BioScience 63, 72–77 (2013).
ArticleGoogle Scholar
Deparis, M., Legay, N., Isselin-Nondedeu, F. & Bonthoux, S. How managers and city dwellers relate to spontaneous vegetation in cities: towards an integrative approach. Urban For. Urban Green 82, 127876 (2023).
ArticleGoogle Scholar
Tan, H.-A. et al. Designing and managing biodiverse streetscapes: key lessons from the city of Melbourne. Urban Ecosyst. 25, 733–740 (2022).
ArticleGoogle Scholar
Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30, e02149 (2020).
ArticleGoogle Scholar
Phillips, B. B., Bullock, J. M., Osborne, J. L. & Gaston, K. J. Ecosystem service provision by road verges. J. Appl. Ecol. 57, 488–501 (2020).
ArticleGoogle Scholar
Säumel, I., Weber, F. & Kowarik, I. Toward livable and healthy urban streets: roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 62, 24–33 (2016).
ArticleGoogle Scholar
Fischer, L. K. & Gopal, D. Streetscapes as surrogate greenspaces during COVID-19? Front. Sustain. Cities 3, 710920 (2021).
ArticleGoogle Scholar
Pellegrini, P. & Baudry, S. Streets as new places to bring together both humans and plants: examples from Paris and Montpellier (France). Soc. Cult. Geogr. 15, 871–900 (2014).
ArticleGoogle Scholar
Navarrete-Hernandez, P., Kiarostami, N., Yang, D. & Ozcakir, A. Green enough? A dose–response curve of the impact of street greenery levels and types on perceived happiness. Landsc. Urban Plan. 251, 105130 (2024).
ArticleGoogle Scholar
Nawrath, M., Kowarik, I. & Fischer, L. K. The influence of green streets on cycling behavior in European cities. Landsc. Urban Plan. 190, 103598 (2019).
ArticleGoogle Scholar
Wong, T. H. F., Rogers, B. C. & Brown, R. R. Transforming cities through water-sensitive principles and practices. One Earth 3, 436–447 (2020).
ArticleGoogle Scholar
Chan, F. K. S. et al. “Sponge City” in China — a breakthrough of planning and flood risk management in the urban context. Land Use Policy 76, 772–778 (2018).
ArticleGoogle Scholar
Filazzola, A., Shrestha, N. & MacIvor, J. S. The contribution of constructed green infrastructure to urban biodiversity: a synthesis and meta‐analysis. J. Appl. Ecol. 56, 2131–2143 (2019).
ArticleGoogle Scholar
Scott MacIvor, J., Williams, N. S. G. & Lundholm, J. in Routledge Handbook of Urban Biodiversity (eds Nilon, C. H. & Aronson, M. F. J.) 333–345 (Routledge, 2023).
Wang, L. et al. The relationship between green roofs and urban biodiversity: a systematic review. Biodivers. Conserv. 31, 1771–1796 (2022).
ArticleGoogle Scholar
Stefanakis, A. I. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 11, 6981 (2019).
ArticleCASGoogle Scholar
Song, S., Albert, C. & Prominski, M. Exploring integrated design guidelines for urban wetland parks in China. Urban For. Urban Green. 53, 126712 (2020).
ArticleGoogle Scholar
Kim, K.-G., Lee, H. & Lee, D.-H. Wetland restoration to enhance biodiversity in urban areas: a comparative analysis. Landsc. Ecol. Eng. 7, 27–32 (2011).
ArticleGoogle Scholar
Wild, T. C., Bernet, J. F., Westling, E. L. & Lerner, D. N. Deculverting: reviewing the evidence on the ‘daylighting’ and restoration of culverted rivers. Water Environ. J. 25, 412–421 (2011).
ArticleGoogle Scholar
Ciach, M., Wrazidło, D. & Fedyń, I. Ecosystem engineers enter the city: habitat characteristics influencing the distribution of Eurasian beavers Castor fiber in a human-transformed landscape. Landsc. Urban Plan. 240, 104893 (2023).
ArticleGoogle Scholar
Aronson, J., Blignaut, J. N. & Aronson, T. B. Conceptual frameworks and references for landscape-scale restoration: reflecting back and looking forward. Ann. Missouri Bot. Gard. 102, 188–200 (2017).
ArticleGoogle Scholar
Fekete, R., Valkó, O., Fischer, L. K., Deák, B. & Klaus, V. H. Ecological restoration and biodiversity-friendly management of urban grasslands — a global review on the current state of knowledge. J. Environ. Manag. 368, 122220 (2024).
ArticleGoogle Scholar
Fernández-Juricic, E. & Jokimäki, J. A habitat island approach to conserving birds in urban landscapes: case studies from southern and northern Europe. Biodivers. Conserv. 10, 2023–2043 (2001).
ArticleGoogle Scholar
Mata, L. et al. Large positive ecological changes of small urban greening actions. Ecol. Solut. Evid. 4, e12259 (2023).
ArticleGoogle Scholar
Threlfall, C. G. & Kendal, D. The distinct ecological and social roles that wild spaces play in urban ecosystems. Urban For. Urban Green 29, 348–356 (2018).
ArticleGoogle Scholar
Kühn, N. Intentions for the unintentional: spontaneous vegetation as the basis for innovative planting design in urban areas. J. Landsc. Arch. 1, 46–53 (2006).
Google Scholar
Fröhlich, A. & Ciach, M. Dead tree branches in urban forests and private gardens are key habitat components for woodpeckers in a city matrix. Landsc. Urban Plan. 202, 103869 (2020).
ArticleGoogle Scholar
Le Roux, D. S. et al. Reduced availability of habitat structures in urban landscapes: implications for policy and practice. Landsc. Urban Plan. 125, 57–64 (2014).
ArticleGoogle Scholar
Oertli, B. & Parris, K. M. Toward management of urban ponds for freshwater biodiversity. Ecosphere 10, e02810 (2019).
ArticleGoogle Scholar
Paudel, S. & States, S. L. Urban green spaces and sustainability: exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban For. Urban Green 84, 127932 (2023).
ArticleGoogle Scholar
Baldock, K. C. Opportunities and threats for pollinator conservation in global towns and cities. Curr. Opin. Insect Sci. 38, 63–71 (2020).
ArticleGoogle Scholar
Proske, A., Lokatis, S. & Rolff, J. Impact of mowing frequency on arthropod abundance and diversity in urban habitats: a meta-analysis. Urban For. Urban Green 76, 127714 (2022).
ArticleGoogle Scholar
Yang, F. et al. Relationships between multi-scale factors, plant and pollinator diversity, and composition of park lawns and other herbaceous vegetation in a fast growing megacity of China. Landsc. Urban Plan. 185, 117–126 (2019).
ArticleGoogle Scholar
Fischer, L. K. et al. Public attitudes toward biodiversity-friendly greenspace management in Europe. Conserv. Lett. 13, e12718 (2020).
ArticleGoogle Scholar
Li, X.-P., Fan, S.-X., Kühn, N., Dong, L. & Hao, P.-Y. Residents’ ecological and aesthetical perceptions toward spontaneous vegetation in urban parks in China. Urban For. Urban Green 44, 126397 (2019).
ArticleGoogle Scholar
Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): should we plant native or exotic species? J. Appl. Ecol. 52, 1156–1164 (2015).
ArticleCASGoogle Scholar
Dunnett, N. & Hitchmough, J. (eds) The Dynamic Landscape: Design, Ecology and Management of Naturalistic Urban Planting (Taylor & Francis, 2004).
Kühn, N. Staudenverwendung (Ulmer, 2024).
Klaus, V. H. & Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol. 52, 82–94 (2021).
ArticleGoogle Scholar
Zerbe, S. in Restoration of Multifunctional Cultural Landscapes: Merging Tradition and Innovation for a Sustainable Future (ed. Zerbe, S.) 497–513 (Springer International Publishing, 2022).
Fischer, L. K., Lippe, M., von der, Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).
ArticleGoogle Scholar
Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17 (2019).
ArticleGoogle Scholar
Bonthoux, S. & Chollet, S. Wilding cities for biodiversity and people: a transdisciplinary framework. Biol. Rev. 99, 1458–1480 (2024).
ArticleGoogle Scholar
Lum, S. & Kang Min, N. Lessons in ecology and conservation from a tropical forest fragment in Singapore. Biol. Conserv. 254, 108847 (2021).
ArticleGoogle Scholar
Sen, A. & Pattanaik, S. Politics of biodiversity conservation and socio ecological conflicts in a city: the case of Sanjay Gandhi National Park, Mumbai. J. Agric. Environ. Ethics 29, 305–326 (2016).
ArticleGoogle Scholar
Gandy, M. Marginalia: aesthetics, ecology, and urban wastelands. Ann. Assoc. Am. Geogr. 103, 1301–1316 (2013).
ArticleGoogle Scholar
Meffert, P. J. & Dziock, F. What determines occurrence of threatened bird species on urban wastelands? Biol. Conserv. 153, 87–96 (2012).
ArticleGoogle Scholar
Zoderer, B. M. & Hainz-Renetzeder, C. Enabling wild nature experiences in cities: a spatial analysis of institutional and physical barriers to using wild nature areas in Vienna, Austria. Landsc. Urban Plan. 254, 105228 (2025).
ArticleGoogle Scholar
Bonthoux, S., Voisin, L., Bouché-Pillon, S. & Chollet, S. More than weeds: spontaneous vegetation in streets as a neglected element of urban biodiversity. Landsc. Urban Plan. 185, 163–172 (2019).
ArticleGoogle Scholar
Zoderer, B. M., Hainz-Renetzeder, C. & Vuolo, F. Mapping wild nature areas to identify priority areas for urban rewilding in cities: a process-oriented approach. Urban For. Urban Green 101, 128549 (2024).
ArticleGoogle Scholar
Hwang, Y. H., Yue, Z. E. J., Ling, S. K. & Tan, H. H. V. It’s ok to be wilder: preference for natural growth in urban green spaces in a tropical city. Urban For. Urban Green 38, 165–176 (2019).
ArticleGoogle Scholar
Kowarik, I. Working with wilderness: a promising direction for urban green spaces. Landsc. Archit. Front. 9, 92–103 (2021).
ArticleGoogle Scholar
Li, J. & Nassauer, J. I. Cues to care: a systematic analytical review. Landsc. Urban Plan. 201, 103821 (2020).
ArticleGoogle Scholar
MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005).
ArticleGoogle Scholar
Bartz, R. & Kowarik, I. Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. NeoBiota 43, 69–99 (2019).
ArticleGoogle Scholar
Robertson, P. A. et al. A proposed unified framework to describe the management of biological invasions. Biol. Invas. 22, 2633–2645 (2020).
ArticleGoogle Scholar
Straka, T. M. et al. Beyond values: how emotions, anthropomorphism, beliefs and knowledge relate to the acceptability of native and non-native species management in cities. People Nat. 4, 1485–1499 (2022).
ArticleGoogle Scholar
Sádlo, J., Vítková, M., Pergl, J. & Pyšek, P. Towards site-specific management of invasive alien trees based on the assessment of their impacts: the case of Robinia pseudoacacia. NeoBiota 35, 1–34 (2017).
ArticleGoogle Scholar
Colléony, A., Levontin, L. & Shwartz, A. Promoting meaningful and positive nature interactions for visitors to green spaces. Conserv. Biol. 34, 1373–1382 (2020).
ArticleGoogle Scholar
Cerda, C., Guenat, S., Egerer, M. & Fischer, L. K. Home food gardening: benefits and barriers during the COVID-19 pandemic in Santiago, Chile. Front. Sustain. Food Syst. 6, 841386 (2022).
ArticleGoogle Scholar
Mumaw, L. & Mata, L. Wildlife gardening: an urban nexus of social and ecological relationships. Front. Ecol. Environ. 20, 379–385 (2022).
ArticleGoogle Scholar
Samus, A., Freeman, C., Dickinson, K. J. M. & Van Heezik, Y. Relationships between nature connectedness, biodiversity of private gardens, and mental well-being during the Covid-19 lockdown. Urban For. Urban Green 69, 127519 (2022).
ArticleGoogle Scholar
Amiri, A., Geravandi, S. & Rostami, F. Potential effects of school garden on students’ knowledge, attitude and experience: a pilot project on sixth grade students in Iran. Urban For. Urban Green 62, 127174 (2021).
ArticleGoogle Scholar
Askerlund, P., Almers, E., Tuvendal, M. & Waite, S. Growing nature connection through greening schoolyards: preschool teachers’ response to ecosystem services innovations. Education 3-13 52, 1341–1352 (2024).
ArticleGoogle Scholar
Egerer, M. & Kowarik, I. Confronting the modern Gordian knot of urban beekeeping. Trends Ecol. Evol. 35, 956–959 (2020).
ArticleGoogle Scholar
MacInnis, G., Normandin, E. & Ziter, C. D. Decline in wild bee species richness associated with honey bee (Apis mellifera L.) abundance in an urban ecosystem. PeerJ 11, e14699 (2023).
ArticleGoogle Scholar
Guenat, S., Bailey-Athias, J. P. & Fischer, L. K. Urban foraging in Brazilian public greenspaces. Ambio 52, 1248–1261 (2023).
ArticleGoogle Scholar
Shackleton, C. M., Hurley, P. T., Dahlberg, A. C., Emery, M. R. & Nagendra, H. Urban foraging: a ubiquitous human practice overlooked by urban planners, policy, and research. Sustainability 9, 1884 (2017).
ArticleGoogle Scholar
Fischer, L. K. & Kowarik, I. Connecting people to biodiversity in cities of tomorrow: is urban foraging a powerful tool? Ecol. Indic. 112, 106087 (2020).
ArticleGoogle Scholar
Sardeshpande, M. & Shackleton, C. Urban foraging: land management policy, perspectives, and potential. PLoS ONE 15, e0230693 (2020).
ArticleCASGoogle Scholar
Shwartz, A. et al. Urban biodiversity, city-dwellers and conservation: how does an outdoor activity day affect the human–nature relationship? PLoS ONE 7, e38642 (2012).
ArticleCASGoogle Scholar
Mumaw, L. M. & Raymond, C. M. A framework for catalysing the rapid scaling of urban biodiversity stewardship programs. J. Environ. Manag. 292, 112745 (2021).
ArticleGoogle Scholar
Peter, M., Diekötter, T., Höffler, T. & Kremer, K. Biodiversity citizen science: outcomes for the participating citizens. People Nat. 3, 294–311 (2021).
ArticleGoogle Scholar
Butler, C. W., Hamlin, I., Richardson, M., Lowe, M. & Fox, R. Connection for conservation: the impact of counting butterflies on nature connectedness and wellbeing in citizen scientists. Biol. Conserv. 292, 110497 (2024).
ArticleGoogle Scholar
Toomey, A. H., Strehlau-Howay, L., Manzolillo, B. & Thomas, C. The place-making potential of citizen science: creating social-ecological connections in an urbanized world. Landsc. Urban Plan. 200, 103824 (2020).
ArticleGoogle Scholar
Greving, H. et al. Improving attitudes and knowledge in a citizen science project about urban bat ecology. Ecol. Soc. https://doi.org/10.5751/ES-13272-270224 (2022).
Whitburn, J., Linklater, W. L. & Milfont, T. L. Exposure to urban nature and tree planting are related to pro-environmental behavior via connection to nature, the use of nature for psychological restoration, and environmental attitudes. Environ. Behav. 51, 787–810 (2019).
ArticleGoogle Scholar
Lewis, D. L. et al. Foraging ecology of black bears in urban environments: guidance for human–bear conflict mitigation. Ecosphere 6, art141 (2015).
ArticleGoogle Scholar
Ávila, M. & Ernstson, H. in Grounding Urban Natures (eds Ernstson, H. & Sorlin, S.) Ch. 5 (MIT Press, 2019).
Veríssimo, D., Tully, B. & Douglas, L. R. in Human–Wildlife Interactions (eds Frank, B., Glikman, J. A. & Marchini, S.) 335–358 (Cambridge Univ. Press, 2019).
Tuttle, M. D. in Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 363–391 (Springer, 2013).
Khoo, M. D. Y. & Lee, B. P. Y.-H. The urban smooth-coated otters Lutrogale perspicillata of Singapore: a review of the reasons for success. Int. Zoo. Yearb. 54, 60–71 (2020).
ArticleGoogle Scholar
Costadone, L. & Vierikko, K. Are traditional urban greening actions compliant with the European Greening Plans guidance? Urban For. Urban Green 90, 128131 (2023).
ArticleGoogle Scholar
Simon, D. et al. Developing and testing the Urban Sustainable Development Goal’s targets and indicators — a five-city study. Environ. Urban 28, 49–63 (2016).
ArticleGoogle Scholar
von Haaren, C., Lovett, A. A. & Albert, C. in Landscape Planning with Ecosystem Services: Theories and Methods for Application in Europe (eds von Haaren, C., Lovett, A. A. & Albert, C.) 19–42 (Springer, 2019).
Lebrun, P., Walz, A., Albert, C. & Lipp, T. Ecosystem-based adaptation in cities: use of formal and informal planning instruments. Land Use Policy 109, 105722 (2021).
ArticleGoogle Scholar
Sankowska, P.-J. Planning instruments and urban development management tools for smart cities. Case study: Ludwigsburg, Germany. In Int. Conf. on Smart Infrastructure and Construction (ICSIC) 177–186 (ICE Publishing, 2019).
Nadin, V., Cotella, G. & Schmitt, P. in Spatial Planning Systems in Europe (eds Nadin, V. et al.) 2–27 (Edward Elgar Publishing, 2024).
Mejía-Dugand, S. & Pizano-Castillo, M. Touching down in cities: territorial planning instruments as vehicles for the implementation of SDG strategies in cities of the Global South. Sustainability 12, 6778 (2020).
ArticleGoogle Scholar
Feng, S., Zhao, W., Zhan, T., Yan, Y. & Pereira, P. Land degradation neutrality: a review of progress and perspectives. Ecol. Indic. 144, 109530 (2022).
ArticleGoogle Scholar
Wende, W., Herberg, A. & Herzberg, A. Mitigation banking and compensation pools: improving the effectiveness of impact mitigation regulation in project planning procedures. Impact Assess. Proj. Apprais. 23, 101–111 (2005).
ArticleGoogle Scholar
Albrecht, J., Schumacher, J. & Wende, W. The German impact-mitigation regulation — a model for the EU’s no-net-loss strategy and biodiversity offsets? Environ. Policy Law 44, 317–332 (2014).
Google Scholar
Thiele, J., Wiehe, J. & von Haaren, C. Participation 3.0 in the implementation of the energy transition—components and effectiveness of an interactive dialogue tool (Vision:En 2040). PLoS ONE 19, e0299270 (2024).
ArticleCASGoogle Scholar
von Haaren, C. & Othengrafen, F. The Babel Fish Toolkit: understanding and using behavioural mechanisms and interventions in landscape planning. DisP Plan. Rev. 55, 22–35 (2019).
ArticleGoogle Scholar
Leshinsky, R. & Legacy, C. (eds) Instruments of Planning: Tensions and Challenges for More Equitable and Sustainable Cities (Routledge, 2015).
Hansen, R. et al. Transformative or piecemeal? Changes in green space planning and governance in eleven European cities. Eur. Plan. Stud. 31, 2401–2424 (2023).
ArticleGoogle Scholar
Rössler, M., Nemeth, E. & Bruckner, A. Glass pane markings to prevent bird-window collisions: less can be more. Biologia 70, 535–541 (2015).
ArticleGoogle Scholar
Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401, 577–589 (2023).
ArticleGoogle Scholar
Sendall, J., Higgins, D., Leake, A., Cowie, H. & Birchby, D. A rapid economic assessment of Wildlife Trusts’ nature prescribing programmes. Lancet 404, S10 (2024).
ArticleGoogle Scholar
Lerman, S. B., Turner, V. K. & Bang, C. Homeowner associations as a vehicle for promoting native urban biodiversity. Ecol. Soc. 17, 45 (2012).
ArticleGoogle Scholar
Dearborn, D. C. & Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 24, 432–440 (2010).
ArticleGoogle Scholar
Lambert, M. & Schell, C. (eds) Urban Biodiversity and Equity: Justice-Centered Conservation in Cities (Oxford Univ. Press, 2023).
Ambrose-Oji, B. et al. Innovative Governance for Urban Green Infrastructure: A Guide for Practitioners (Green Surge, 2017).
Armsworth, P. R., Daily, G. C., Kareiva, P. & Sanchirico, J. N. Land market feedbacks can undermine biodiversity conservation. Proc. Natl. Acad. Sci. USA 103, 5403–5408 (2006).
ArticleCASGoogle Scholar
Sponagel, C. et al. Integrated assessment of regional approaches for biodiversity offsetting in urban-rural areas—a future based case study from Germany using arable land as an example. Land Use Policy 117, 106085 (2022).
ArticleGoogle Scholar
Roe, M. H. et al. Urban national parks or national park cities? Town Ctry Plan. Q. Rev. Town Ctry Plan. Assoc. 87, 261–267 (2018).
Google Scholar
Baró, F., Langemeyer, J., Łaszkiewicz, E. & Kabisch, N. Editorial to the special issue “Advancing urban ecosystem service implementation and assessment considering different dimensions of environmental justice”. Environ. Sci. Policy 115, 43–46 (2021).
ArticleGoogle Scholar
Rigolon, A. et al. Advancing green space equity via policy change: a scoping review and research agenda. Environ. Sci. Policy 157, 103765 (2024).
ArticleGoogle Scholar
Sen, A. & Nagendra, H. Local community engagement, environmental placemaking and stewardship by migrants: a case study of lake conservation in Bengaluru, India. Landsc. Urban Plan. 204, 103933 (2020).
ArticleGoogle Scholar
Sultana, R., Birtchnell, T. & Gill, N. Grassroots innovation for urban greening within a governance vacuum by slum dwellers in Dhaka. Sustainability 14, 11631 (2022).
ArticleGoogle Scholar
Wen, C., Albert, C. & von Haaren, C. Nature-based recreation for the elderly in urban areas: assessing opportunities and demand as planning support. Ecol. Process. 11, 44 (2022).
ArticleGoogle Scholar
Mundoli, S. & Nagendra, H. in The Routledge Handbook of Urban Ecology (eds Nilon, C. H. & Aronson, M. F. J.) 685–693 (Routledge, 2020).
Cocks, M. L. & Wiersum, F. Reappraising the concept of biocultural diversity: a perspective from South Africa. Hum. Ecol. 42, 727–737 (2014).
ArticleGoogle Scholar
Vierikko, K. et al. Considering the ways biocultural diversity helps enforce the urban green infrastructure in times of urban transformation. Curr. Opin. Environ. Sustain. 22, 7–12 (2016).
ArticleGoogle Scholar
Kremer, P., Haase, A. & Haase, D. The future of urban sustainability: smart, efficient, green or just? Introduction to the special issue. Sustain. Cities Soc. 51, 101761 (2019).
ArticleGoogle Scholar
Haase, D. et al. Greening cities — to be socially inclusive? About the alleged paradox of society and ecology in cities. Habitat. Int. 64, 41–48 (2017).
ArticleGoogle Scholar
Browning, M. H. E. M. et al. Measuring the 3–30–300 rule to help cities meet nature access thresholds. Sci. Total. Environ. 907, 167739 (2024).
ArticleCASGoogle Scholar
Pierce, J. R. et al. Urban Nature Indexes tool offers comprehensive and flexible approach to monitoring urban ecological performance. npj Urban. Sustain. 4, 22 (2024).
ArticleGoogle Scholar
Beatley, T. Biophilic Cities (Island Press/Center for Resource Economics, 2011).
Parris, K. M. et al. The seven lamps of planning for biodiversity in the city. Cities 83, 44–53 (2018).
ArticleGoogle Scholar
Apfelbeck, B. et al. Designing wildlife-inclusive cities that support human–animal co-existence. Landsc. Urban Plan. 200, 103817 (2020).
ArticleGoogle Scholar
Hernandez-Santin, C., Amati, M., Bekessy, S. & Desha, C. Integrating biodiversity as a non-human stakeholder within urban development. Landsc. Urban Plan. 232, 104678 (2023).
ArticleGoogle Scholar
Kirk, H. et al. Building biodiversity into the urban fabric: a case study in applying Biodiversity Sensitive Urban Design (BSUD). Urban For. Urban Green 62, 127176 (2021).
ArticleGoogle Scholar
Basnou, C., Pino, J., Davies, C., Winkel, G. & De Vreese, R. Co-design processes to address nature-based solutions and ecosystem services demands: the long and winding road towards inclusive urban planning. Front. Sustain. Cities 2, 572556 (2020).
ArticleGoogle Scholar
Kabisch, N., Frantzeskaki, N. & Hansen, R. Principles for urban nature-based solutions. Ambio 51, 1388–1401 (2022).
ArticleGoogle Scholar
McPhearson, T., Kabisch, N. & Frantzeskaki, N. (eds) Nature-Based Solutions for Cities (Edward Elgar Publishing, 2023).
Mercado, G. et al. Supporting nature-based solutions via nature-based thinking across European and Latin American cities. Ambio 53, 79–94 (2024).
ArticleGoogle Scholar
Konijnendijk van den Bosch, C. C. Tree agency and urban forest governance. Smart Sustain. Built Environ. 5, 176–188 (2016).
ArticleGoogle Scholar
Download references
Author information
Authors and Affiliations
Institute of Ecology, Technische Universität Berlin, Berlin, Germany
Ingo Kowarik
Institute of Landscape Planning and Ecology, Universität Stuttgart, Stuttgart, Germany
Leonie K. Fischer
Humboldt Universität zu Berlin and Helmholtz Centre for Environmental Research (UFZ), Berlin, Germany
Dagmar Haase
Physical Geography and Landscape Ecology, Leibniz Universität Hannover, Hannover, Germany
Nadja Kabisch
Institute of Environmental Planning, Leibniz Universität Hannover, Hannover, Germany
Fritz Kleinschroth & Christina von Haaren
Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
Fritz Kleinschroth
Nature Based Solutions Institute, Utrecht, Netherlands
Cecil Konijnendijk
Institute of Biology, Freie Universität Berlin, Berlin, Germany
Tanja M. Straka
Authors
Ingo Kowarik
View author publications
You can also search for this author inPubMedGoogle Scholar
2. Leonie K. Fischer
View author publications
You can also search for this author inPubMedGoogle Scholar
3. Dagmar Haase
View author publications
You can also search for this author inPubMedGoogle Scholar
4. Nadja Kabisch
View author publications
You can also search for this author inPubMedGoogle Scholar
5. Fritz Kleinschroth
View author publications
You can also search for this author inPubMedGoogle Scholar
6. Cecil Konijnendijk
View author publications
You can also search for this author inPubMedGoogle Scholar
7. Tanja M. Straka
View author publications
You can also search for this author inPubMedGoogle Scholar
8. Christina von Haaren
View author publications
You can also search for this author inPubMedGoogle Scholar
Contributions
I.K. led the writing, and all authors made substantial contributions to the text and edited the manuscript before submission.
Corresponding author
Correspondence to Ingo Kowarik.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks Charles Nilon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Biodiversity Net Gain: https://www.gov.uk/government/collections/biodiversity-net-gain
Global Commons Alliance 2020: https://globalcommonsalliance.org/
Tree Equity Score: https://www.americanforests.org/tools-research-reports-and-guides/tree-equity-score/
Glossary
Environmental justice
Environmental justice in urban contexts refers to fair and equitable access to nature’s benefits, fair participation in urban decision-making, and respect for the needs and values of all residents.
Landscape planning
A type of environmental planning conducted at various spatial scales by public authorities to develop natural, rural and built environments while protecting, restoring or enhancing biodiversity and ecosystem services — in many countries, this is a legally mandated process, either as an independent planning instrument or as part of urban and regional planning.
Urban biodiversity
Variability among living organisms within city limits, from genes to species to ecosystems to urban land-use types, encompassing all wild, cultivated or domesticated organisms regardless of their origin.
Urban blue spaces
Water bodies within cities.
Urban design
An approach to the design of buildings and open spaces in cities, involving the work of architects, landscape architects and urban planners.
Urban governance
Urban governance refers to the strategic decision-making process by which governments and stakeholders, including residents and nongovernmental organizations, work together to plan, manage and finance urban areas, balancing diverse interests and promoting cooperation.
Urban green infrastructure
Sometimes termed blue-green infrastructure, a strategically planned network of natural, semi-natural and designed areas within cities, created and managed to deliver a range of ecosystem services and support biodiversity, incorporating green spaces, blue spaces and the built environment.
Urban green spaces
Mostly vegetated open spaces in cities, comprising formal public and private green spaces (such as parks, cemeteries or domestic gardens), and informal green spaces such as spontaneously vegetated spaces in other land-use areas.
Urban planning
An interdisciplinary process, led by governmental and public authorities, to manage urban land use, development and environmental transformations, including the development of housing, energy and transportation infrastructure, recreational areas, biodiversity and climate-adaptation strategies.
Urban wilderness
Areas in cities dominated by natural processes instead of direct human influences, comprising ancient urban wilderness as natural remnants and novel wilderness on urban–industrial land201.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Kowarik, I., Fischer, L.K., Haase, D. et al. Promoting urban biodiversity for the benefit of people and nature. Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00035-y
Download citation
Accepted:28 February 2025
Published:25 March 2025
DOI:https://doi.org/10.1038/s44358-025-00035-y
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative