nature.com

Global distribution, quantification and valuation of the biological carbon pump

AbstractThe biological carbon pump (BCP) sequesters vast amounts of carbon in the ocean, but its importance for conservation, climate finance and international policy has not been properly assessed. Here, using spatial analysis and financial valuation of the BCP service, we estimate that, annually, the BCP adds 2.81 GtC (range 2.44–3.53 GtC) to the ocean with a storage time of at least 50 years (±25 years). This ecosystem service is worth US$545 billion per year (US$471–694 billion) in areas beyond national jurisdiction and US$383 billion per year (US$336–471 billion) within all exclusive economic zones, where the sum of its discounted values for 2023–2030 is US$2.2 trillion (range US$1.9–2.7 trillion). These results quantify the climate and economic importance of the BCP and the important role of large ocean states in carbon sequestration. These findings can support discussions in climate finance and in the COP global stocktake for climate action.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Spatial and geopolitical distribution of BCP carbon sequestration.Fig. 2: 50-year carbon sequestration rate within countries’ EEZ and MPAs, grouped by continent.Fig. 3: BCP carbon service value in relation to GDP.Fig. 4: BCP 50-year sequestration hotspots covering 10% and 30% of the ocean surface and relative global coverage.

Data availability

Data used to perform the analysis are available from their respective sources indicated in Extended Data Table 1. The output from the NEMO model is available via Zenodo at https://doi.org/10.5281/zenodo.14773923 (ref. 72).

Code availability

The code is available via Zenodo at https://doi.org/10.5281/zenodo.14773923 (ref. 73).

ReferencesSumaila, U. R. et al. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).Article 

CAS 

Google Scholar 

Cavanagh, R. D. et al. Future risk for southern ocean ecosystem services under climate change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.615214 (2021).Cavan, E. L. & Hill, S. L. Commercial fishery disturbance of the global ocean biological carbon sink. Glob. Change Biol. 28, 1212–1221 (2022).Article 

Google Scholar 

Epstein, G., Middelburg, J. J., Hawkins, J. P., Norris, C. R. & Roberts, C. M. The impact of mobile demersal fishing on carbon storage in seabed sediments. Glob. Change Biol. 28, 2875–2894 (2022).Article 

CAS 

Google Scholar 

Leaper, R. The role of slower vessel speeds in reducing greenhouse gas emissions, underwater noise and collision risk to whales. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00505 (2019).Drazen, J. C. et al. Midwater ecosystems must be considered when evaluating environmental risks of deep-sea mining. Proc. Natl Acad. Sci. USA 117, 17455–17460 (2020).Article 

Google Scholar 

Dişa, D., Akoglu, E. & Salihoglu, B. Exploitation of mesopelagic fish stocks can impair the biological pump and food web dynamics in the ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2024.1389941 (2024).Maier-Reimer, E., Mikolajewicz, U. & Winguth, A. Future ocean uptake of CO2: interaction between ocean circulation and biology. Clim. Dyn. 12, 711–722 (1996).Article 

Google Scholar 

Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 36, e2021GB007083 (2022).Article 

CAS 

Google Scholar 

Aumont, O., Maury, O., Lefort, S. & Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles 32, 1622–1643 (2018).Article 

CAS 

Google Scholar 

Pinti, J. et al. Model estimates of metazoans’ contributions to the biological carbon pump. Biogeosciences 20, 997–1009 (2023).Article 

CAS 

Google Scholar 

Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1639–1664 (2021).Article 

CAS 

Google Scholar 

Schmitz, O. J. et al. Trophic rewilding can expand natural climate solutions. Nat. Clim. Change 13, 324–333 (2023).Free, C. M. et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 15, e0224347 (2020).Article 

CAS 

Google Scholar 

Andersen, N. F. et al. Good fisheries management is good carbon management. NPJ Ocean Sustain. 3, 17 (2024).Article 

Google Scholar 

Heinrich, L., Koschinsky, A., Markus, T. & Singh, P. Quantifying the fuel consumption, greenhouse gas emissions and air pollution of a potential commercial manganese nodule mining operation. Mar. Policy 114, 103678 (2020).Article 

Google Scholar 

Greer, K. et al. Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950 to 2016. Mar. Policy 107, 103382 (2019).Article 

Google Scholar 

Sumaila, U. R., de Fontaubert, C. & Palomares, M. L. D. Editorial: how overfishing handicaps resilience of marine resources under climate change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1250449 (2023).A Research Strategy for Ocean-Based Carbon Dioxide Removal and Sequestration (NASEM, 2021); https://doi.org/10.17226/26278Hernández-León, S. The biological carbon pump, diel vertical migration, and carbon dioxide removal. iScience https://doi.org/10.1016/j.isci.2023.107835 (2023).Roberts, C. M., O’Leary, B. C. & Hawkins, J. P. Climate change mitigation and nature conservation both require higher protected area targets. Phil. Trans. R. Soc. B 375, 20190121 (2020).Article 

Google Scholar 

Jacquemont, J., Blasiak, R., Cam, C. L., Gouellec, M. L. & Claudet, J. Ocean conservation boosts climate change mitigation and adaptation. One Earth 5, 1126–1138 (2022).Article 

Google Scholar 

Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).Article 

CAS 

Google Scholar 

Berzaghi, F. et al. Value wild animals’ carbon services to fill the biodiversity financing gap. Nat. Clim. Change 12, 598–601 (2022).Chami, R., Cosimano, T., Fullenkamp, C. & Nieburg, D. Toward a nature-based economy. Front. Clim. https://doi.org/10.3389/fclim.2022.855803 (2022).Lew, D. K. Willingness to pay for threatened and endangered marine species: a review of the literature and prospects for policy use. Front. Mar. Sci. https://doi.org/10.3389/fmars.2015.00096 (2015).Balmford, A. et al. Realizing the social value of impermanent carbon credits. Nat. Clim. Change 13, 1172–1178 (2023).Article 

Google Scholar 

Bertram, C. et al. The blue carbon wealth of nations. Nat. Clim. Change 11, 704–709 (2021).Chami, R. et al. in Economic Challenges for Europe After the Pandemic (ed. Paganetto, L.) 117–162 (Springer, 2022).Berzaghi, F., Chami, R., Cosimano, T. & Fullenkamp, C. Financing conservation by valuing carbon services produced by wild animals. Proc. Natl Acad. Sci. USA 119, e2120426119 (2022).Article 

CAS 

Google Scholar 

Chamon, M. d., Klok, E., Thakoor, V. V. & Zettelmeyer, J. Debt-for-Climate Swaps: Analysis, Design, and Implementation (IMF, 2022); https://www.elibrary.imf.org/view/journals/001/2022/162/article-A001-en.xmlDruckenmiller, H. Accounting for ecosystem service values in climate policy. Nat. Clim. Change 12, 596–598 (2022).Article 

Google Scholar 

Johnson, C. M. et al. Protecting blue corridors—challenges and solutions for migratory whales navigating national and international seas. Zenodo https://doi.org/10.5281/zenodo.6196131 (2022).Jankowska, E., Pelc, R., Alvarez, J., Mehra, M. & Frischmann, C. J. Climate benefits from establishing marine protected areas targeted at blue carbon solutions. Proc. Natl Acad. Sci. USA 119, e2121705119 (2022).Article 

CAS 

Google Scholar 

Gjerde, K. M. et al. Getting beyond yes: fast-tracking implementation of the United Nations agreement for marine biodiversity beyond national jurisdiction. NPJ Ocean Sustain. 1, 6 (2022).Article 

Google Scholar 

Barange, M. et al. The cost of reducing the North Atlantic Ocean biological carbon pump. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00290 (2017).Thamo, T. & Pannell, D. J. Challenges in developing effective policy for soil carbon sequestration: perspectives on additionality, leakage, and permanence. Clim. Policy 16, 973–992 (2016).Article 

Google Scholar 

Siegel, D. A., DeVries, T., Doney, S. C. & Bell, T. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. Environ. Res. Lett. 16, 104003 (2021).Article 

CAS 

Google Scholar 

Sheehy, J., Porter, J., Bell, M. & Kerr, S. Redefining blue carbon with adaptive valuation for global policy. Sci. Total Environ. 908, 168253 (2024).Article 

CAS 

Google Scholar 

Matthews, H. D. et al. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun. Earth Environ. 3, 65 (2022).Article 

Google Scholar 

Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022).Article 

CAS 

Google Scholar 

Fourth (2020) Biennial Assessment and Overview of Climate Finance Flows (UNFCCC, 2021).Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).Article 

CAS 

Google Scholar 

Li, M.-L. et al. Tracking industrial fishing activities in African waters from space. Fish Fish. 22, 851–864 (2021).Article 

CAS 

Google Scholar 

Williamson, P. & Gattuso, J.-P. Carbon removal using coastal blue carbon ecosystems is uncertain and unreliable, with questionable climatic cost-effectiveness. Front. Clim. 4, 853666 (2022).Article 

Google Scholar 

Fenichel, E. P. et al. Modifying national accounts for sustainable ocean development. Nat. Sustain. 3, 889–895 (2020).Article 

Google Scholar 

Friess, D. A., Howard, J., Huxham, M., Macreadie, P. I. & Ross, F. Capitalizing on the global financial interest in blue carbon. PLoS Clim. 1, e0000061 (2022).Article 

Google Scholar 

Chausson, A. et al. Going beyond market-based mechanisms to finance nature-based solutions and foster sustainable futures. PLoS Clim. 2, e0000169 (2023).Article 

Google Scholar 

State and Trends of Carbon Pricing 2023. (World Bank, 2023); https://doi.org/10.1596/39796Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–900 (2018).Article 

CAS 

Google Scholar 

McMonagle, H., Llopiz, J. K., Hilborn, R. & Essington, T. E. High uncertainty in fish bioenergetics impedes precision of fish-mediated carbon transport estimates into the ocean’s twilight zone. Prog. Oceanogr. 217, 103078 (2023).Article 

Google Scholar 

Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J. & DeVries, T. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 7, eabd7554 (2021).Article 

Google Scholar 

Mouillot, D. et al. Industrial fisheries have reversed the carbon sequestration by tuna carcasses into emissions. Glob. Change Biol. 29, 5062–5074 (2023).Article 

CAS 

Google Scholar 

Stafford, R., Boakes, Z., Hall, A. E. & Jones, G. C. A. The role of predator removal by fishing on ocean carbon dynamics. Anthr. Sci. 1, 204–210 (2022).Article 

Google Scholar 

Mariani, G. et al. Let more big fish sink: fisheries prevent blue carbon sequestration—half in unprofitable areas. Sci. Adv. 6, eabb4848 (2020).Article 

CAS 

Google Scholar 

Durfort, A. et al. Recovery of carbon benefits by overharvested baleen whale populations is threatened by climate change. Proc. R. Soc. B 289, 20220375 (2022).Article 

CAS 

Google Scholar 

Pinti, J., Jónasdóttir, S. H., Record, N. R. & Visser, A. W. The global contribution of seasonally migrating copepods to the biological carbon pump. Limnol. Oceanogr. 68, 1147–1160 (2023).Article 

CAS 

Google Scholar 

Ottmann, D., Denderen, P. Dvan, Visser, A. & Andersen, K. H. Impact of increased fishing on long-term sequestration of carbon by cephalopods. Curr. Biol. 34, R526–R527 (2024).Article 

CAS 

Google Scholar 

Wilson, J. D. et al. The biological carbon pump in CMIP6 models: 21st century trends and uncertainties. Proc. Natl Acad. Sci. USA 119, e2204369119 (2022).Article 

CAS 

Google Scholar 

Littleton, E. W. et al. Dynamic modelling shows substantial contribution of ecosystem restoration to climate change mitigation. Environ. Res. Lett. 16, 124061 (2021).Article 

CAS 

Google Scholar 

Gao, G. et al. A review of existing and potential blue carbon contributions to climate change mitigation in the Anthropocene. J. Appl. Ecol. 59, 1686–1699 (2022).Article 

CAS 

Google Scholar 

Hilmi, N. et al. Deep sea nature-based solutions to climate change. Front. Clim. https://doi.org/10.3389/fclim.2023.1169665 (2023).Hilmi, N. et al. The role of blue carbon in climate change mitigation and carbon stock conservation. Front. Clim. https://doi.org/10.3389/fclim.2021.710546 (2021).Reimer, J. M., Devillers, R. & Claudet, J. Benefits and gaps in area-based management tools for the ocean Sustainable Development Goal. Nat. Sustain. 4, 349–357 (2021).Article 

Google Scholar 

Hernangómez, D. & EuroGeographics giscoR: Download Map Data from GISCO API—Eurostat (2025); https://cran.r-project.org/web/packages/giscoR/index.htmlCallahan, J. et al. MazamaScience/MazamaSpatialUtils: 0.8.7. Zenodo https://doi.org/10.5281/zenodo.14026985 (2024).Dupont, L. et al. High trophic level feedbacks on global ocean carbon uptake and marine ecosystem dynamics under climate change. Glob. Change Biol. 29, 1545–1556 (2023).Article 

CAS 

Google Scholar 

COP15: Final Text of Kunming–Montreal Global Biodiversity Framework (Convention on Biological Diversity, 2022).Diebold, F. X. & Rudebusch, G. D. Yield Curve Modeling and Forecasting: The Dynamic Nelson–Siegel Approach. (Princeton Univ. Press, 2013); https://doi.org/10.1515/9781400845415Drupp, M., Freeman, M., Groom, B. & Nesje, F. Discounting Disentangled: An Expert Survey on the Determinants of the Long-Term Social Discount Rate (Centre for Climate Change Economics and Policy, 2015); https://www.lse.ac.uk/granthaminstitute/publication/discounting-disentangled/Felix. FinCal: package for time value of money calculation, time series analysis and computational finance. Zenodo https://doi.org/10.5281/zenodo.49954 (2016).Olivier, A., Olivier, M., Laurent, B. & Stelly, L. Dataset and code of NEMO-PISCES-APECOSM. Zenodo https://doi.org/10.5281/zenodo.1460596 (2018).Berzaghi, F. Global distribution, quantification, and valuation of the biological carbon pump. Zenodo https://doi.org/10.5281/zenodo.14781145 (2025).Download referencesAcknowledgementsWe thank R. Chami and D. Nieburg for the useful discussions on the valuation of the open sea, T. Sutton and M. Haeckel for the useful discussion on deep-sea mining, J. Sutton of UNEP-WCMC for assistance with the MPA data and E. Blondel of FAO for assistance with EEZ shapefiles. We thank R. Sanders and M. Rudd for the feedback on the paper. Work by F.B. and M.S.W. was funded by the European Union under grant agreement no. 101083922 (OceanICU). F.B. and M.S.W. recognize the support from the MEESO project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 817669. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.Author informationAuthor notesMary S. WiszPresent address: National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, DenmarkAuthors and AffiliationsOcean Sustainability, Governance and Management, World Maritime University, Malmö, SwedenF. Berzaghi & Mary S. WiszCollege of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, USAJérôme PintiGulf of Maine Research Institute, Portland, ME, USAJérôme PintiLaboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques (LOCEAN), IPSL, CNRS/UPMC/IRD/MNHN, Paris, FranceOlivier AumontMARBEC, IRD, Univ Montpellier, CNRS, Ifremer, INRAE, Sète, FranceOlivier MauryBlue Green Future LLC, Falls Church, VA, USAThomas CosimanoAuthorsF. BerzaghiView author publicationsYou can also search for this author inPubMed Google ScholarJérôme PintiView author publicationsYou can also search for this author inPubMed Google ScholarOlivier AumontView author publicationsYou can also search for this author inPubMed Google ScholarOlivier MauryView author publicationsYou can also search for this author inPubMed Google ScholarThomas CosimanoView author publicationsYou can also search for this author inPubMed Google ScholarMary S. WiszView author publicationsYou can also search for this author inPubMed Google ScholarContributionsF.B. and M.S.W. conceived and designed the project. M.S.W. obtained the funding. F.B. wrote the first draft with input from M.S.W. F.B. designed and developed the methodology with input from J.P., O.A., O.M. and T.C. F.B. performed the analysis and prepared the figures. F.B. led the writing, and all other authors contributed with editing and feedback.Corresponding authorCorrespondence to

F. Berzaghi.Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Jack Sheehy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Total 50-year carbon sequestration rate at each level depth and the percentage of carbon stored at each depth out of the total annually-stored carbon.Level depths from 10 m to 40 m have been removed as no significant amount of the exported carbon remains stored after 50 years. The Depth axis is in log scale to help visualization.Extended Data Fig. 2 Fifty-year carbon sequestration rate at each level depth as represented in the NEMO-PISCES-APECOSM as a function of the ocean circulation model.Level depths from 10 m to 40 m have been removed as no significant amount of the exported carbon remains stored after 50 years. Please see the Methods for an explanation on how the 50-year carbon sequestration rate was calculated. Coastline boundaries from ref. 65. EEZ boundaries from ref. 66. Administrative boundaries from EuroGeographics.Extended Data Table 1 Sources, acronyms, and description of data used in the BCP spatial analysis of carbon sequestration and valuation of its serviceFull size tableSupplementary informationSupplementary Table 1Carbon sequestration and valuation by country. The file includes all the countries involved in the study and the analysis of the 50-year carbon sequestration within their EEZ and MPA. It also includes the present value of the carbon sequestration service within the EEZ and the annuity payments for both the 2030 and the 2050 horizon valuation.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleBerzaghi, F., Pinti, J., Aumont, O. et al. Global distribution, quantification and valuation of the biological carbon pump.

Nat. Clim. Chang. (2025). https://doi.org/10.1038/s41558-025-02295-0Download citationReceived: 26 December 2023Accepted: 21 February 2025Published: 27 March 2025DOI: https://doi.org/10.1038/s41558-025-02295-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page