Abstract
Beneficial bacterial symbionts are widespread in insects and affect the fitness of their hosts by contributing to nutrition, digestion, detoxification, communication or protection from abiotic stressors or natural enemies. Decades of research have formed our understanding of the identity, localization and functional benefits of insect symbionts, and the increasing availability of genome sequences spanning a diversity of pathogens and beneficial bacteria now enables comparative approaches of their metabolic features and their phylogenetic affiliations, shedding new light on the origin and function of beneficial symbioses in insects. In this Review, we explore the symbionts’ metabolic traits that can provide benefits to insect hosts and discuss the evolutionary paths to the formation of host-beneficial symbiotic associations. Phylogenetic analyses and molecular studies reveal that extracellular symbioses colonizing cuticular organs or the digestive tract evolved from a broad diversity of bacterial partners, whereas intracellular beneficial symbionts appear to be restricted to a limited number of lineages within the Gram-negative bacteria and probably originated from parasitic ancestors. To unravel the general principles underlying host–symbiont interactions and recapitulate the early evolutionary steps leading towards beneficial symbioses, future efforts should aim to establish more symbiotic systems that are amenable to genetic manipulation and experimental evolution.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Learn more
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Overview of known beneficial bacterial symbioses across insect orders.
Fig. 2: Functional diversity of insect symbionts.
Fig. 3: Functional genomic comparison of exemplary obligate and co-obligate beneficial symbionts in insects.
Fig. 4: Evolution of beneficial symbioses in insects.
Fig. 5: Phylogenetic affiliation of insect-associated intracellular symbionts within the bacterial tree of life.
Fig. 6: Impact of symbiont acquisition and transmission route on ecological niche space and evolutionary diversification of the insect host.
References
Drew, G. C., Stevens, E. J. & King, K. C. Microbial evolution and transitions along the parasite–mutualist continuum. Nat. Rev. Microbiol. 19, 623–638 (2021).
CASPubMedPubMed CentralGoogle Scholar
McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).
CASPubMedPubMed CentralGoogle Scholar
Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Interscience, 1965).
Douglas, A. E. Insects and Their Beneficial Microbes (Princeton Univ. Press, 2022).
Wheeler, W. C., Whiting, M., Wheeler, Q. D. & Carpenter, J. M. The phylogeny of the extant hexapod orders. Cladistics 17, 113–169 (2001).
PubMedGoogle Scholar
Cornwallis, C. K. et al. Symbioses shape feeding niches and diversification across insects. Nat. Ecol. Evol. 7, 1022–1044 (2023).
PubMedPubMed CentralGoogle Scholar
Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).
PubMedPubMed CentralGoogle Scholar
Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16, 67–79 (2018).
CASPubMedGoogle Scholar
Behmer, S. T. in Encyclopedia of Entomology (ed. Capinera, J. L.) 2646–2654 (Springer Netherlands, 2008).
Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).
CASPubMedGoogle Scholar
Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).
Google Scholar
Paludo, C. R. et al. Stingless bee larvae require fungal steroid to pupate. Sci. Rep. https://doi.org/10.1038/s41598-018-19583-9 (2018).
Douglas, A. E. Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57, 747–754 (2006).
CASPubMedGoogle Scholar
Salem, H. & Kaltenpoth, M. Beetle–bacterial symbioses: endless forms most functional. Annu. Rev. Entomol. 67, 201–219 (2022).
CASPubMedGoogle Scholar
Sudakaran, S., Kost, C. & Kaltenpoth, M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 25, 375–390 (2017).
CASPubMedGoogle Scholar
Vigneron, A. et al. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 24, 2267–2273 (2014).
CASPubMedGoogle Scholar
Andersen, S. O. Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178 (2010).
CASPubMedGoogle Scholar
Engl, T. et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27, 2095–2108 (2018).
CASPubMedGoogle Scholar
Anbutsu, H. et al. Small genome symbiont underlies cuticle hardness in beetles. Proc. Natl Acad. Sci. USA 114, E8382–E8391 (2017).
CASPubMedPubMed CentralGoogle Scholar
Zientz, E., Beyaert, N., Gross, R. & Feldhaar, H. Relevance of the endosymbiosis of Blochmannia floridanus and carpenter ants at different stages of the life cycle of the host. Appl. Environ. Microbiol. 72, 6027–6033 (2006).
CASPubMedPubMed CentralGoogle Scholar
Duplais, C. et al. Gut bacteria are essential for normal cuticle development in herbivorous turtle ants. Nat. Commun. 12, 676 (2021).
CASPubMedPubMed CentralGoogle Scholar
Jackson, R. A. H. E. L. et al. Convergent evolution of a labile nutritional symbiosis in ants. ISME J. 16, 2114–2122 (2022).
PubMedPubMed CentralGoogle Scholar
Anbutsu, H. & Fukatsu, T. in Cellular Dialogues in the Holobiont (eds Bosch, T. C. G. & Hadfield, M. G.) 201–215 (CRC, 2021).
Kanyile, S. N., Engl, T., Heddi, A. & Kaltenpoth, M. Endosymbiosis allows Sitophilus oryzae to persist in dry conditions. Front. Microbiol. 14, 1199370 (2023).
PubMedPubMed CentralGoogle Scholar
Kanyile, S. N., Engl, T. & Kaltenpoth, M. Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle. J. Exp. Biol. 225, jeb243593 (2022).
PubMedPubMed CentralGoogle Scholar
Bar-Shmuel, N., Behar, A. & Segoli, M. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Sci. 27, 392–403 (2020).
PubMedGoogle Scholar
Hansen, A. K., Pers, D. & Russell, J. A. in Mechanisms Underlying Microbial Symbiosis (eds Oliver, K. M. & Russell, J. A.) 161–205 (Academic–Elsevier Science, 2020).
Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl Acad. Sci. USA 106, 19521–19526 (2009).
CASPubMedPubMed CentralGoogle Scholar
Flórez, L. V., Biedermann, P. H. W., Engl, T. & Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32, 904–936 (2015).
PubMedGoogle Scholar
Engl, T. & Kaltenpoth, M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 35, 386–397 (2018).
CASPubMedGoogle Scholar
Van Arnam, E. B., Currie, C. R. & Clardy, J. Defense contracts: molecular protection in insect–microbe symbioses. Chem. Soc. Rev. 47, 1638–1651 (2018).
PubMedGoogle Scholar
Dillon, R. J., Vennard, C. T. & Charnley, A. K. Exploitation of gut bacteria in the locust. Nature 403, 851 (2000).
CASPubMedGoogle Scholar
Ren, L., Ma, Y., Xie, M., Lu, Y. & Cheng, D. Rectal bacteria produce sex pheromones in the male oriental fruit fly. Curr. Biol. 31, 2220–2226.e4 (2021).
CASPubMedGoogle Scholar
Wada-Katsumata, A. et al. Gut bacteria mediate aggregation in the German cockroach. Proc. Natl Acad. Sci. USA 112, 15678–15683 (2015).
CASPubMedPubMed CentralGoogle Scholar
Marshall, D. G. et al. Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland. Sci. Nat. 103, 59 (2016).
CASGoogle Scholar
Engl, T. Sex pheromones: made with a little help from my (bacterial) friends. Curr. Biol. 31, R474–R476 (2021).
CASPubMedGoogle Scholar
Heath, J. J., Cipollini, D. F. & Stireman, J. O. The role of carotenoids and their derivatives in mediating interactions between insects and their environment. Arthropod Plant. Interact. 7, 1–20 (2013).
Google Scholar
Sloan, D. B. & Moran, N. A. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol. Biol. Evol. 29, 3781–3792 (2012).
CASPubMedPubMed CentralGoogle Scholar
Moran, N. A. & Jarvik, T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328, 624–627 (2010).
CASPubMedGoogle Scholar
Nakabachi, A. et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23, 1478–1484 (2013).
CASPubMedGoogle Scholar
Kellner, R. L. L. & Dettner, K. Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia 107, 293–300 (1996).
PubMedGoogle Scholar
Oliver, K. M., Degnan, P. H., Hunter, M. S. & Moran, N. A. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325, 992–994 (2009).
CASPubMedPubMed CentralGoogle Scholar
Ballinger, M. J., Gawryluk, R. M. R. & Perlman, S. J. Toxin and genome evolution in a Drosophila defensive symbiosis. Genome Biol. Evol. 11, 253–262 (2019).
CASPubMedGoogle Scholar
Ballinger, M. J. & Perlman, S. J. Generality of toxins in defensive symbiosis: ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathog. 13, 19 (2017).
Google Scholar
Lindsey, A. R. I., Bhattacharya, T., Newton, I. L. G. & Hardy, R. W. Conflict in the intracellular lives of endosymbionts and viruses: a mechanistic look at Wolbachia-mediated pathogen-blocking. Viruses 10, 141 (2018).
PubMedPubMed CentralGoogle Scholar
Motta, E. V. S., Lariviere, P. J., Jones, K. R., Song, Y. L. & Moran, N. A. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc. Natl Acad. Sci. USA 121, e2414882121 (2024).
CASPubMedGoogle Scholar
Kaltenpoth, M., Gottler, W., Herzner, G. & Strohm, E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15, 475–479 (2005).
CASPubMedGoogle Scholar
Flórez, L. V. et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect defensive mutualism. Nat. Commun. 8, 15172 (2017).
PubMedPubMed CentralGoogle Scholar
Flórez, L. V. et al. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat. Commun. 9, 2478 (2018).
PubMedPubMed CentralGoogle Scholar
Kroiss, J. et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6, 261–263 (2010).
CASPubMedGoogle Scholar
Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).
CASPubMedGoogle Scholar
Kaltenpoth, M. et al. Partner choice and fidelity stabilize co-evolution in a Cretaceous-age defensive symbiosis. Proc. Natl Acad. Sci. USA 111, 6359–6364 (2014).
CASPubMedPubMed CentralGoogle Scholar
Engl, T. et al. Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc. Natl Acad. Sci. USA 115, E2020–E2029 (2018).
CASPubMedPubMed CentralGoogle Scholar
Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. P. Roy. Soc. B-Biol. Sci. 275, 293–299 (2008).
Google Scholar
Weldon, S. R., Russell, J. A. & Oliver, K. M. More is not always better: coinfections with defensive symbionts generate highly variable outcomes. Appl. Environ. Microbiol. 86, e02537-19 (2020).
PubMedPubMed CentralGoogle Scholar
Piel, J., Hofer, I. & Hui, D. Q. Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J. Bacteriol. 186, 1280–1286 (2004).
CASPubMedPubMed CentralGoogle Scholar
Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M. & Perlman, S. J. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329, 212–215 (2010).
CASPubMedGoogle Scholar
Van Sluys, M. A. et al. Comparative genomic analysis of plant-associated bacteria. Annu. Rev. Phytopathol. 40, 169–189 (2002).
PubMedGoogle Scholar
Ward, O. P. & Mooyoung, M. Enzymatic degradation of cell-wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8, 237–274 (1989).
CASPubMedGoogle Scholar
Kirsch, R. et al. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochem. Mol. Biol. 52, 33–50 (2014).
CASPubMedGoogle Scholar
Wybouw, N., Pauchet, Y., Heckel, D. G. & Van Leeuwen, T. Horizontal gene transfer contributes to the evolution of arthropod herbivory. Genome Biol. Evol. 8, 1785–1801 (2016).
CASPubMedPubMed CentralGoogle Scholar
Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).
CASPubMedGoogle Scholar
Kirsch, R. et al. Symbiosis and horizontal gene transfer promote herbivory in the megadiverse leaf beetles. Curr. Biol. 35, 640–654 (2025).
CASPubMedGoogle Scholar
Kirsch, R. et al. Metabolic novelty originating from horizontal gene transfer is essential for leaf beetle survival. Proc. Natl Acad. Sci. USA 119, 9 (2022).
Google Scholar
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).
CASPubMedGoogle Scholar
Ceja-Navarro, J. A. et al. Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat. Microbiol. 4, 864–875 (2019).
CASPubMedGoogle Scholar
Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019).
CASPubMedPubMed CentralGoogle Scholar
Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl Acad. Sci. USA 109, 11002–11007 (2012).
CASPubMedPubMed CentralGoogle Scholar
Salem, H. et al. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr. Biol. 30, 2875–2886 (2020).
CASPubMedGoogle Scholar
Reis, F. et al. Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles. Nat. Commun. 11, 2964 (2020).
CASPubMedPubMed CentralGoogle Scholar
Itoh, H., Tago, K., Hayatsu, M. & Kikuchi, Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Prod. Rep. 35, 434–454 (2018).
CASPubMedGoogle Scholar
Dearing, M. D., Kaltenpoth, M. & Gershenzon, J. Demonstrating the role of symbionts in mediating detoxification in herbivores. Symbiosis 87, 59–66 (2022).
PubMedPubMed CentralGoogle Scholar
Motta, E. V. S. et al. Host–microbiome metabolism of a plant toxin in bees. eLife 11, e82595 (2022).
CASPubMedPubMed CentralGoogle Scholar
Dowd, P. F. & Shen, S. K. The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol. Exp. Appl. 56, 241–248 (1990).
CASGoogle Scholar
Sato, Y. et al. Insecticide resistance by a host–symbiont reciprocal detoxification. Nat. Commun. 12, 8 (2021).
Google Scholar
Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).
CASPubMedPubMed CentralGoogle Scholar
Ceja-Navarro, J. A. et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 6, 7618 (2015).
CASPubMedGoogle Scholar
Shukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29, 4692–4705 (2020).
CASPubMedGoogle Scholar
Berasategui, A. et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol. Ecol. 26, 4099–4110 (2017).
CASPubMedGoogle Scholar
Nikoh, N., Hosokawa, T., Oshima, K., Hattori, M. & Fukatsu, T. Reductive evolution of bacterial genome in insect gut environment. Genome Biol. Evol. 3, 702–714 (2011).
CASPubMedPubMed CentralGoogle Scholar
Welte, C. U. et al. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ. Microbiol. 18, 1379–1390 (2016).
CASPubMedGoogle Scholar
Ben-Yosef, M., Pasternak, Z., Jurkevitch, E. & Yuval, B. Symbiotic bacteria enable olive fly larvae to overcome host defences. R. Soc. Open. Sci. 2, 150170 (2015).
PubMedPubMed CentralGoogle Scholar
Liu, F. H. et al. Symbiotic microbes aid host adaptation by metabolizing a deterrent host pine carbohydrate d-pinitol in a beetle–fungus invasive complex. Sci. Adv. 8, 14 (2022).
Google Scholar
Li, H., Young, S. E., Poulsen, M. & Currie, C. R. Symbiont-mediated digestion of plant biomass in fungus-farming insects. Annu. Rev. Entomol. 66, 297–316 (2021).
CASPubMedGoogle Scholar
Martiarena, M. J. S., Deveau, A., Montoya, Q. V., Flórez, L. V. & Rodrigues, A. The hyphosphere of leaf-cutting ant cultivars is enriched with helper bacteria. Microb. Ecol. 86, 1773–1788 (2023).
CASPubMedGoogle Scholar
Pinto-Tomás, A. A. et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120–1123 (2009).
PubMedGoogle Scholar
Anderson, K. E., Sheehan, T. H., Eckholm, B. J., Mott, B. M. & DeGrandi-Hoffman, G. An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insect Soc. 58, 431–444 (2011).
Google Scholar
Grubbs, K. J. et al. Cycloheximide-producing Streptomyces associated with Xyleborinus saxesenii and Xyleborus affinis fungus-farming ambrosia beetles. Front. Microbiol. 11, 562140 (2020).
PubMedPubMed CentralGoogle Scholar
Pessotti, Rd. C. et al. Multiple lineages of Streptomyces produce antimicrobials within passalid beetle galleries across eastern North America. eLife 10, e65091 (2021).
CASPubMedPubMed CentralGoogle Scholar
Shukla, S. P. et al. Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc. Natl Acad. Sci. USA 115, 11274–11279 (2018).
CASPubMedPubMed CentralGoogle Scholar
Douglas, A. E. Housing microbial symbionts: evolutionary origins and diversification of symbiotic organs in animals. Philos. Trans. R. Soc. B 375, 20190603 (2020).
Google Scholar
Chomicki, G., Werner, G. D. A., West, S. A. & Kiers, E. T. Compartmentalization drives the evolution of symbiotic cooperation. Philos. Trans. R. Soc. B 375, 20190602 (2020).
CASGoogle Scholar
Hong, S., Sun, Y., Sun, D. & Wang, C. Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections. iScience 25, 104408 (2022).
CASPubMedPubMed CentralGoogle Scholar
Currie, C. R., Poulsen, M., Mendenhall, J., Boomsma, J. J. & Billen, J. Coevolved crypts and exocrine glands. Science 311, 81–83 (2006).
CASPubMedGoogle Scholar
Goettler, W., Kaltenpoth, M., McDonald, S. & Strohm, E. Comparative morphology of the symbiont cultivation glands in the antennae of female digger wasps of the genus Philanthus (Hymenoptera: Crabronidae). Front. Physiol. 13, 815494 (2022).
PubMedPubMed CentralGoogle Scholar
Janke, R. S. et al. Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages. ISME J. 16, 2691–2701 (2022).
CASPubMedPubMed CentralGoogle Scholar
Worsley, S. F. et al. Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biol 19, 205 (2021).
CASPubMedPubMed CentralGoogle Scholar
Engel, P. & Moran, N. A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
CASPubMedGoogle Scholar
Potrikus, C. J. & Breznak, J. A. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc. Natl Acad. Sci. USA 78, 4601–4605 (1981).
CASPubMedPubMed CentralGoogle Scholar
Salem, H. et al. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. P. Roy. Soc. B-Biol. Sci. 281, 20141838 (2014).
Google Scholar
Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).
CASPubMedPubMed CentralGoogle Scholar
Onchuru, T. O., Martinez, A. J. & Kaltenpoth, M. The cotton stainer’s gut microbiota suppresses infection of a co-transmitted trypanosomatid parasite. Mol. Ecol. 27, 3408–3419 (2018).
CASGoogle Scholar
Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA 114, 9641–9646 (2017).
CASPubMedPubMed CentralGoogle Scholar
Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).
CASPubMedGoogle Scholar
Girard, M., Luis, P., Moro, C. V. & Minard, G. Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol. 31, 181–196 (2022).
PubMedGoogle Scholar
Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).
CASPubMedPubMed CentralGoogle Scholar
Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. P. Roy. Soc. B-Biol. Sci. 282, 20142957 (2015).
Google Scholar
Onchuru, T. O., Javier Martinez, A., Ingham, C. S. & Kaltenpoth, M. Transmission of mutualistic bacteria in social and gregarious insects. Curr. Opin. Insect Sci. 28, 50–58 (2018).
PubMedGoogle Scholar
Moran, N. A., Ochman, H. & Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annu. Rev. Ecol. Evol. Syst. 50, 451–475 (2019).
PubMedPubMed CentralGoogle Scholar
Schmidt, K. & Engel, P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Biol. 224, jeb207696 (2021).
PubMedGoogle Scholar
Ganesan, R., Wierz, J., Kaltenpoth, M. & Flórez, L. V. How it all begins: bacterial factors mediating the colonization of invertebrate hosts by beneficial symbionts. Microbiol. Mol. Biol. Rev. 86, e0012621 (2022).
PubMedGoogle Scholar
Chen, J. Z., Kwong, Z., Gerardo, N. M. & Vega, N. M. Ecological drift during colonization drives within-host and between-host heterogeneity in an animal-associated symbiont. PLoS Biol. 22, 25 (2024).
Google Scholar
Itoh, H. et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc. Natl Acad. Sci. USA 116, 22673–22682 (2019).
CASPubMedPubMed CentralGoogle Scholar
Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).
CASPubMedPubMed CentralGoogle Scholar
Johnston, P. R., Paris, V. & Rolff, J. Immune gene regulation in the gut during metamorphosis in a holo- versus a hemimetabolous insect. Philos. Trans. R. Soc. B 374, 20190073 (2019).
CASGoogle Scholar
Ohbayashi, T. et al. Insect’s intestinal organ for symbiont sorting. Proc. Natl Acad. Sci. USA 112, E5179–E5188 (2015).
CASPubMedPubMed CentralGoogle Scholar
Lanan, M. C., Rodrigues, P. A. P., Agellon, A., Jansma, P. & Wheeler, D. E. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 10, 1866–1876 (2016).
CASPubMedPubMed CentralGoogle Scholar
Fukumori, K. et al. Evolutionary dynamics of host organs for microbial symbiosis in tortoise leaf beetles (Coleoptera: Chrysomelidae: Cassidinae). mBio 13, e0369121 (2022).
PubMedGoogle Scholar
Matsuura, Y. et al. Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME J. 6, 397–409 (2012).
CASPubMedGoogle Scholar
Oishi, S., Moriyama, M., Koga, R. & Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool. Lett. 5, 16 (2019).
Google Scholar
Kikuchi, Y., Ohbayashi, T., Jang, S. & Mergaert, P. Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME J. 14, 1627–1638 (2020).
CASPubMedPubMed CentralGoogle Scholar
Dale, C., Young, S. A., Haydon, D. T. & Welburn, S. C. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc. Natl Acad. Sci. USA 98, 1883–1888 (2001).
CASPubMedPubMed CentralGoogle Scholar
Maire, J. et al. Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil. Proc. Natl Acad. Sci. USA 117, 19347–19358 (2020).
CASPubMedPubMed CentralGoogle Scholar
Wilkes, T. E. et al. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Mol. Biol. 19, 59–73 (2010).
CASPubMedGoogle Scholar
Wierz, J. C. et al. Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders. ISME J. 18, 13 (2024).
Google Scholar
Schepers, M. J., Yelland, J. N., Moran, N. A. & Taylor, D. W. Isolation of the Buchnera aphidicola flagellum basal body complexes from the Buchnera membrane. PLoS ONE 16, 10 (2021).
Google Scholar
Richter, D. J. & Levin, T. C. The origin and evolution of cell-intrinsic antibacterial defenses in eukaryotes. Curr. Opin. Genet. Dev. 58–59, 111–122 (2019).
PubMedPubMed CentralGoogle Scholar
Krakauer, T. Inflammasomes, autophagy, and cell death: the trinity of innate host defense against intracellular bacteria. Mediators Inflamm. 2019, 2471215 (2019).
PubMedPubMed CentralGoogle Scholar
Tam, J. C. H. & Jacques, D. A. Intracellular immunity: finding the enemy within—how cells recognize and respond to intracellular pathogens. J. Leukoc. Biol. 96, 233–244 (2014).
PubMedPubMed CentralGoogle Scholar
Jo, Y. H. et al. Autophagy in Tenebrio molitor immunity: conserved antimicrobial functions in insect defenses. Front. Immunol. 12, 667664 (2021).
CASPubMedPubMed CentralGoogle Scholar
Steinert, S. & Levashina, E. A. Intracellular immune responses of dipteran insects. Immunol. Rev. 240, 129–140 (2011).
CASPubMedGoogle Scholar
Brenner, A. E., Muñoz-Leal, S., Sachan, M., Labruna, M. B. & Raghavan, R. Coxiella burnetii and related tick endosymbionts evolved from pathogenic ancestors. Genome Biol. Evol. 13, evab108 (2021).
CASPubMedPubMed CentralGoogle Scholar
Dharamshi, J. E. et al. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat. Microbiol. 8, 40–54 (2023).
CASPubMedPubMed CentralGoogle Scholar
Stelzner, K., Vollmuth, N. & Rudel, T. Intracellular lifestyle of Chlamydia trachomatis and host–pathogen interactions. Nat. Rev. Microbiol. 21, 448–462 (2023).
CASPubMedGoogle Scholar
Van Schaik, E. J., Chen, C., Mertens, K., Weber, M. M. & Samuel, J. E. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol. 11, 561–573 (2013).
PubMedPubMed CentralGoogle Scholar
Voss, O. H. & Rahman, M. S. Rickettsia–host interaction: strategies of intracytosolic host colonization. Pathog. Dis. 79, ftab015 (2021).
CASPubMedPubMed CentralGoogle Scholar
Feng, H. et al. Trading amino acids at the aphid–Buchnera symbiotic interface. Proc. Natl Acad. Sci. USA 116, 16003–16011 (2019).
CASPubMedPubMed CentralGoogle Scholar
Costa, H. S., Westcot, D. M., Ullman, D. E. & Johnson, M. W. Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum. Protoplasma 176, 106–115 (1993).
Google Scholar
Wang, Y.-B. et al. Autophagy regulates whitefly–symbiont metabolic interactions. Appl. Environ. Microbiol. 88, e02089–02021 (2022).
CASPubMedPubMed CentralGoogle Scholar
Deehan, M., Lin, W., Blum, B., Emili, A. & Frydman, H. Intracellular density of Wolbachia is mediated by host autophagy and the bacterial cytoplasmic incompatibility gene cifB in a cell type-dependent manner in Drosophila melanogaster. mBio 12, e02205-20 (2021).
PubMedPubMed CentralGoogle Scholar
Aguilar, C., Mano, M. & Eulalio, A. microRNAs at the host–bacteria interface: host defense or bacterial offense. Trends Microbiol. 27, 206–218 (2019).
CASPubMedGoogle Scholar
Martyn, J. E., Gomez-Valero, L. & Buchrieser, C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol. Rev. 46, fuac012 (2022).
PubMedGoogle Scholar
LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243 (2017).
CASPubMedPubMed CentralGoogle Scholar
Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).
CASPubMedPubMed CentralGoogle Scholar
Hussain, M., Frentiu, F. D., Moreira, L. A., O’Neill, S. L. & Asgari, S. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 9250–9255 (2011).
CASPubMedPubMed CentralGoogle Scholar
Bublitz, D. A. C. et al. Peptidoglycan production by an insect–bacterial mosaic. Cell 179, 703–712.e7 (2019).
CASPubMedPubMed CentralGoogle Scholar
Sun, X. et al. A novel microRNA regulates cooperation between symbiont and a laterally acquired gene in the regulation of pantothenate biosynthesis within Bemisia tabaci whiteflies. Mol. Ecol. 31, 2611–2624 (2022).
CASPubMedGoogle Scholar
Dale, C., Plague, G. R., Wang, B., Ochman, H. & Moran, N. A. Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc. Natl Acad. Sci. USA 99, 12397–12402 (2002).
CASPubMedPubMed CentralGoogle Scholar
Chomicki, G., Kiers, E. T. & Renner, S. S. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51, 409–432 (2020).
Google Scholar
Frank, S. A. Models of symbiosis. Am. Nat. 150, S80–S99 (1997).
PubMedGoogle Scholar
Su, Y. et al. Rational engineering of a synthetic insect–bacterial mutualism. Curr. Biol. 32, 3925–3938.e6 (2022).
CASPubMedPubMed CentralGoogle Scholar
Koga, R. et al. Single mutation makes Escherichia coli an insect mutualist. Nat. Microbiol. 7, 1141–1150 (2022).
CASPubMedPubMed CentralGoogle Scholar
Durvasula, R. V., Sundaram, R. K., Cordon-Rosales, C., Pennington, P. & Beard, C. B. in Insect Symbiosis (eds Bourtzis, K. & Miller, T. A.) 83–96 (CRC, 2003).
Currie, C. R., Scott, J. A., Summerbell, R. C. & Malloch, D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398, 701–704 (1999).
CASGoogle Scholar
Evans, J. D. & Lopez, D. L. Bacterial probiotics induce an immune response in the honeybee (Hymenoptera: Apidae). J. Econ. Entomol. 97, 752–756 (2004).
CASPubMedGoogle Scholar
Consuegra, J. et al. Metabolic cooperation among commensal bacteria supports Drosophila juvenile growth under nutritional stress. Iscience 23, 41 (2020).
Google Scholar
Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl Acad. Sci. USA 114, 4775–4780 (2017).
CASPubMedPubMed CentralGoogle Scholar
Shao, Y. et al. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem. Biol. 24, 66–75 (2017).
CASPubMedGoogle Scholar
Berasategui, A. et al. Symbiont genomic features and localization in the bean beetle Callosobruchus maculatus. Appl. Environ. Microbiol. 87, e0021221 (2021).
PubMedGoogle Scholar
Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal disease. mBio 12, e0050321 (2021).
Google Scholar
Kaltenpoth, M. & Flórez, L. V. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu. Rev. Entomol. 65, 145–170 (2020).
CASPubMedGoogle Scholar
Sudakaran, S., Retz, F., Kikuchi, Y., Kost, C. & Kaltenpoth, M. Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME J. 9, 2587–2604 (2015).
PubMedPubMed CentralGoogle Scholar
Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).
CASPubMedGoogle Scholar
Piel, J. A polyketide synthase–peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl Acad. Sci. USA 99, 14002–14007 (2002).
CASPubMedPubMed CentralGoogle Scholar
Mukherjee, K. et al. Galleria mellonella as a model system for studying Listeria pathogenesis. Appl. Environ. Microbiol. 76, 310–317 (2010).
CASPubMedGoogle Scholar
Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl Acad. Sci. USA 115, E5970–E5979 (2018).
CASPubMedPubMed CentralGoogle Scholar
Everett, K. D. E., Thao, M. L., Horn, M., Dyszynski, G. E. & Baumann, P. Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int. J. Syst. Evol. Microbiol. 55, 1581–1587 (2005).
CASPubMedGoogle Scholar
Nechitaylo, T. Y. et al. Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proc. Natl Acad. Sci. USA 118, e2023047118 (2021).
CASPubMedPubMed CentralGoogle Scholar
Itoh, H. et al. Infection dynamics of insecticide-degrading symbionts from soil to insects in response to insecticide spraying. ISME J. 12, 909–920 (2018).
CASPubMedPubMed CentralGoogle Scholar
Hosokawa, T. et al. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat. Microbiol. 1, 15011 (2016).
CASPubMedGoogle Scholar
McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).
CASPubMedGoogle Scholar
Heckel, D. G. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Arch. Insect Biochem. Physiol. 104, 12 (2020).
Google Scholar
Nielsen-LeRoux, C., Gaudriault, S., Ramarao, N., Lereclus, D. & Givaudan, A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr. Opin. Microbiol. 15, 220–231 (2012).
PubMedGoogle Scholar
de Bekker, C., Beckerson, W. C. & Elya, C. Mechanisms behind the madness: how do zombie-making fungal entomopathogens affect host behavior to increase transmission? mBio 12, 15 (2021).
Google Scholar
Laukaitis, H. J. & Macaluso, K. R. Unpacking the intricacies of Rickettsia–vector interactions. Trends Parasitol. 37, 734–746 (2021).
PubMedPubMed CentralGoogle Scholar
Trivellone, V. & Dietrich, C. H. Evolutionary diversification in insect vector–Phytoplasma–plant associations. Ann. Entomol. Soc. Am. 114, 137–150 (2020).
Google Scholar
Manzano-Marín, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 14, 259–273 (2020).
Google Scholar
Landmann, F. The Wolbachia endosymbionts. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.bai-0018-2019 (2019).
Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA 107, 769–774 (2010).
CASPubMedGoogle Scholar
Moriyama, M., Nikoh, N., Hosokawa, T. & Fukatsu, T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio 6, e01732-15 (2015).
PubMedPubMed CentralGoogle Scholar
Dobson, S. L., Marsland, E. J. & Rattanadechakul, W. Mutualistic Wolbacbia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160, 1087–1094 (2002).
PubMedPubMed CentralGoogle Scholar
Zug, R. & Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 90, 89–111 (2015).
PubMedGoogle Scholar
Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).
CASPubMedGoogle Scholar
Wang, X. L., Zhang, Y. Q., Zhang, R. & Zhang, J. H. The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens. Curr. Opin. Insect Sci. 33, 105–110 (2019).
PubMedGoogle Scholar
Kim, S. J., Chang, J. & Singh, M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim. Biophys. Acta 1848, 350–362 (2015).
CASPubMedGoogle Scholar
Maire, J., Vincent-Monégat, C., Masson, F., Zaidman-Rémy, A. & Heddi, A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome 6, 6 (2018).
PubMedPubMed CentralGoogle Scholar
Liegeois, S. & Ferrandon, D. Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 74, 35–62 (2022).
CASPubMedGoogle Scholar
Vorburger, C. Defensive symbionts and the evolution of parasitoid host specialization. Annu. Rev. Entomol. 67, 329–346 (2022).
CASPubMedGoogle Scholar
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
CASPubMedGoogle Scholar
Zhang, Z.-Q. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3703, 17–26 (2013).
Google Scholar
Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020).
CASPubMedPubMed CentralGoogle Scholar
Janson, E. M., Stireman, J. O., Singer, M. S. & Abbot, P. Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62, 997–1012 (2008).
PubMedGoogle Scholar
Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl Acad. Sci. USA 104, 8627–8633 (2007).
CASPubMedPubMed CentralGoogle Scholar
Bright, M. & Bulgheresi, S. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218–230 (2010).
CASPubMedPubMed CentralGoogle Scholar
Perreau, J. & Moran, N. A. Genetic innovations in animal–microbe symbioses. Nat. Rev. Genet. 23, 23–39 (2022).
CASPubMedGoogle Scholar
Moran, N. A. & Degnan, P. H. Functional genomics of Buchnera and the ecology of aphid hosts. Mol. Ecol. 15, 1251–1261 (2006).
CASPubMedGoogle Scholar
Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296, 2376–2379 (2002).
CASPubMedGoogle Scholar
Wierz, J. C., Gimmel, M. L., Huthmacher, S., Engl, T. & Kaltenpoth, M. Evolutionary history of tyrosine-supplementing endosymbionts in pollen-feeding beetles. ISME J. 18, 16 (2024).
Google Scholar
Bennett, G. M. & Moran, N. A. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc. Natl Acad. Sci. USA 112, 10169–10176 (2015).
CASPubMedPubMed CentralGoogle Scholar
Download references
Acknowledgements
The authors acknowledge financial support from the Max Planck Society and the European Research Council through a Consolidator Grant to M.K. (ERC CoG 819585 ‘SYMBeetle’) and from the Novo Nordisk Foundation through a postdoctoral research grant to L.V.F. (NNF20OC0064385).
Author information
Author notes
These authors contributed equally: Martin Kaltenpoth, Laura V. Flórez, Aurélien Vigneron, Philipp Dirksen, Tobias Engl.
Authors and Affiliations
Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
Martin Kaltenpoth, Aurélien Vigneron, Philipp Dirksen & Tobias Engl
Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
Martin Kaltenpoth, Laura V. Flórez, Aurélien Vigneron, Philipp Dirksen & Tobias Engl
Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
Laura V. Flórez
Universite Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
Aurélien Vigneron
Authors
Martin Kaltenpoth
View author publications
You can also search for this author inPubMedGoogle Scholar
2. Laura V. Flórez
View author publications
You can also search for this author inPubMedGoogle Scholar
3. Aurélien Vigneron
View author publications
You can also search for this author inPubMedGoogle Scholar
4. Philipp Dirksen
View author publications
You can also search for this author inPubMedGoogle Scholar
5. Tobias Engl
View author publications
You can also search for this author inPubMedGoogle Scholar
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Correspondence to Martin Kaltenpoth.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Nancy Moran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supporting information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Kaltenpoth, M., Flórez, L.V., Vigneron, A. et al. Origin and function of beneficial bacterial symbioses in insects. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-025-01164-z
Download citation
Accepted:11 February 2025
Published:27 March 2025
DOI:https://doi.org/10.1038/s41579-025-01164-z
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative