Gene transfer enables bacteria to adapt to their environment. To sensitively detect gene transfer, we created a synthetic biology tool that introduces an identifiable barcode into RNA when microbes exchange DNA. When applied in a wastewater community, high-throughput sequencing revealed which microbes in the community participated in gene transfer.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Learn more
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: RAM, a synthetic biology tool to measure gene transfer.
References
Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005). This review provides an overview of the mechanisms of horizontal gene transfer.
ArticleCASPubMedGoogle Scholar
Arnold, B. J., Huang, I.-T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022). This review describes the mechanisms and evolutionary theory of bacterial adaptation through gene transfer.
ArticleCASPubMedGoogle Scholar
Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 (2016). This review discusses approaches and applications for in situ microbiome engineering.
ArticleCASPubMedPubMed CentralGoogle Scholar
Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19, 442–453 (2021). This review discusses laboratory techniques used to measure gene transfer.
ArticleCASPubMedGoogle Scholar
Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022). This paper describes the environmental transformation sequencing (ET-Seq) method for mapping and quantifying gene transfer.
ArticleCASPubMedGoogle Scholar
Download references
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This is a summary of: Kalvapalle, P. B. et al. Information storage across a microbial community using universal RNA barcoding. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02593-0 (2025).
Rights and permissions
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Sensitive detection of gene transfer in a microbial community. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02639-3
Download citation
Published:28 March 2025
DOI:https://doi.org/10.1038/s41587-025-02639-3
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative