nature.com

Reactivation of retrotransposable elements is associated with environmental stress and ageing

Abstract

Retrotransposable elements (RTEs) are interspersed repetitive sequences that represent a large portion of eukaryotic genomes. Ancestral expansions of RTEs directly contributed to the shaping of these genomes and to the evolution of different species, particularly mammals. RTE activity is tightly regulated by different epigenetic mechanisms but this control becomes compromised as cells age and RTEs are reactivated. This dysregulation of RTEs leads to perturbation of cell function and organ and organismal homeostasis, which drives ageing and age-related disease. Environmental stress is associated with both ageing-related characteristics and the epigenetic mechanisms that control RTE activity, with accumulating evidence indicating that RTE reactivation mediates the effects of environmental stressors on ageing onset and progression. A better understanding of how RTEs are reactivated and their subsequent biological roles may help the development of therapies against ageing-related phenotypes and diseases.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Impact of RTEs on the evolution of the eukaryotic genome.

Fig. 2: The epigenetic suppression of RTEs.

Fig. 3: The pro-inflammatory activity of RTEs.

Fig. 4: The effects of RTE transcription products on cell function.

Fig. 5: Relationship between RTE silencing and environmental challenges.

References

Deniz, Ö., Frost, J. M. & Branco, M. R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 20, 417–431 (2019).

PubMedGoogle Scholar

de Koning, A. P. J., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

PubMedPubMed CentralGoogle Scholar

Kazazian, H. H. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

PubMedGoogle Scholar

Deininger, P. L. & Batzer, M. A. Mammalian retroelements. Genome Res. 12, 1455–1465 (2002).

PubMedGoogle Scholar

Lagemaat, L. N. V. D., Landry, J. R., Mager, D. L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).

PubMedGoogle Scholar

Ricci, M., Peona, V., Guichard, E., Taccioli, C. & Boattini, A. Transposable elements activity is positively related to rate of speciation in mammals. J. Mol. Evol. 86, 303–310 (2018).

PubMedPubMed CentralGoogle Scholar

Kojima, S. et al. Mobile element variation contributes to population-specific genome diversification, gene regulation and disease risk. Nat. Genet. 55, 939–951 (2023).

PubMedGoogle Scholar

Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163, 68–84 (2015).

PubMedPubMed CentralGoogle Scholar

Göke, J. & Ng, H. H. CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome. EMBO Rep. 17, 1131–1144 (2016).

PubMedPubMed CentralGoogle Scholar

Modzelewski, A. J., Chong, J. G., Wang, T. & He, L. Mammalian genome innovation through transposon domestication. Nat. Cell Biol. https://doi.org/10.1038/s41556-022-00970-4 (2022).

Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2016).

PubMedPubMed CentralGoogle Scholar

Mangiavacchi, A., Liu, P., Valle, F. D. & Orlando, V. New insights into the functional role of retrotransposon dynamics in mammalian somatic cells. Cell. Mol. Life Sci. 78, 5245–5256 (2021).

PubMedPubMed CentralGoogle Scholar

Bodega, B. & Orlando, V. Repetitive elements dynamics in cell identity programming, maintenance and disease. Curr. Opin. Cell Biol. 31, 67–73 (2014).

PubMedGoogle Scholar

Gasparotto, E. et al. Transposable elements co-option in genome evolution and gene regulation. Int. J. Mol. Sci. 24, 2610 (2023).

PubMedPubMed CentralGoogle Scholar

Sundaram, V. & Wysocka, J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190347 (2020).

Google Scholar

Joly-Lopez, Z. & Bureau, T. E. Exaptation of transposable element coding sequences. Curr. Opin. Genet. Dev. 49, 34–42 (2018).

PubMedGoogle Scholar

Nicolau, M., Picault, N. & Moissiard, G. The evolutionary volte-face of transposable elements: from harmful jumping genes to major drivers of genetic innovation. Cells 10, 2952 (2021).

PubMedPubMed CentralGoogle Scholar

Annibalini, G. et al. MIR retroposon exonization promotes evolutionary variability and generates species-specific expression of IGF-1 splice variants. Biochim. Biophys. Acta Gene Regul. Mech. 1859, 757–768 (2016).

Google Scholar

Etchegaray, E., Naville, M., Volff, J.-N. & Haftek-Terreau, Z. Transposable element-derived sequences in vertebrate development. Mob. DNA 12, 1 (2021).

PubMedPubMed CentralGoogle Scholar

Hoen, D. R. & Bureau, T. E. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol. Biol. Evol. 32, 1487–1506 (2015).

PubMedGoogle Scholar

Sela, N. et al. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu’s unique role in shaping the human transcriptome. Genome Biol. 8, R127 (2007).

PubMedPubMed CentralGoogle Scholar

Lin, L. et al. Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes. Hum. Mol. Genet. 18, 2204–2214 (2009).

PubMedPubMed CentralGoogle Scholar

Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).

PubMedPubMed CentralGoogle Scholar

Frost, J. M. et al. Regulation of human trophoblast gene expression by endogenous retroviruses. Nat. Struct. Mol. Biol. 30, 527–538 (2023).

PubMedPubMed CentralGoogle Scholar

Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192 (2015).

PubMedGoogle Scholar

Macciardi, F. et al. A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer’s disease. Geroscience 44, 1525–1550 (2022).

PubMedPubMed CentralGoogle Scholar

Kazazian, H. H. & Moran, J. V. Mobile DNA in health and disease. N. Engl. J. Med. https://doi.org/10.1056/nejmra1510092 (2017).

Solyom, S. & Kazazian, H. H. Mobile elements in the human genome: implications for disease. Genome Med. 4, 12 (2012).

PubMedPubMed CentralGoogle Scholar

Gorbunova, V. et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43–53 (2021).

PubMedPubMed CentralGoogle Scholar

Zamudio, N. & Bourc’his, D. Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity 105, 92–104 (2010).

PubMedGoogle Scholar

Lawson, H. A., Liang, Y. & Wang, T. Transposable elements in mammalian chromatin organization. Nat. Rev. Genet. https://doi.org/10.1038/s41576-023-00609-6 (2023).

Sedivy, J. M. et al. Death by transposition—the enemy within? BioEssays 35, 1035–1043 (2013).

PubMedPubMed CentralGoogle Scholar

Cecco, M. D. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).

PubMedGoogle Scholar

Simon, M. et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871–885.e5 (2019).

PubMedPubMed CentralGoogle Scholar

Valle, F. D. et al. LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci. Transl. Med. 14, eabl6057 (2022).

PubMedGoogle Scholar

Li, W. et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat. Neurosci. 16, 529–531 (2013).

PubMedPubMed CentralGoogle Scholar

Chen, H., Zheng, X., Xiao, D. & Zheng, Y. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell 15, 542–552 (2016).

PubMedPubMed CentralGoogle Scholar

Liu, X. et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cellhttps://doi.org/10.1016/j.cell.2022.12.017 (2023).

Cho, K., Lee, Y.-K. & Greenhalgh, D. G. Endogenous retroviruses in systemic response to stress signals. Shock 30, 105–116 (2008).

PubMedGoogle Scholar

Gallo, A., Boni, R. & Tosti, E. Gamete quality in a multistressor environment. Environ. Int. 138, 105627 (2020).

PubMedGoogle Scholar

Camila, B. et al. Genotoxicity and hypomethylation of LINE-1 induced by electronic cigarettes. Ecotoxicol. Environ. Saf. 256, 114900 (2023).

PubMedGoogle Scholar

Etchegaray, J. P. & Mostoslavsky, R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol. Cellhttps://doi.org/10.1016/j.molcel.2016.05.029 (2016).

Prasad, S., Tiwari, M., Pandey, A. N., Shrivastav, T. G. & Chaube, S. K. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 23, 36 (2016).

PubMedPubMed CentralGoogle Scholar

Chuma, S. LINE-1 of evidence for fetal oocyte attrition by retrotransposon. Dev. Cell 29, 501–502 (2014).

PubMedGoogle Scholar

Re, B. D. & Giorgi, G. Long INterspersed element‐1 mobility as a sensor of environmental stresses. Environ. Mol. Mutagen. 61, 465–493 (2020).

PubMedGoogle Scholar

Carotti, E. et al. LTR retroelements and bird adaptation to arid environments. Int. J. Mol. Sci. 24, 6332 (2023).

PubMedPubMed CentralGoogle Scholar

Richter, T. A., Aiken, A. A., Puracchio, M. J., Maganga-Bakita, I. & Hunter, R. G. Maternal immune activation and enriched environments impact B2 SINE expression in stress sensitive brain regions of rodent offspring. Genes 14, 858 (2023).

PubMedPubMed CentralGoogle Scholar

Horváth, V., Merenciano, M. & González, J. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 33, 832–841 (2017).

PubMedGoogle Scholar

Chénais, B., Caruso, A., Hiard, S. & Casse, N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509, 7–15 (2012).

PubMedGoogle Scholar

Godden, A. M. & Immler, S. The potential role of the mobile and non-coding genomes in adaptive response. Trends Genet. 39, 5–8 (2023).

PubMedGoogle Scholar

Gorbunova, V., Seluanov, A. & Kennedy, B. K. The world goes bats: living longer and tolerating viruses. Cell Metab. 32, 31–43 (2020).

PubMedPubMed CentralGoogle Scholar

Chénais, B. Transposable elements and human diseases: mechanisms and implication in the response to environmental pollutants. Int. J. Mol. Sci. 23, 2551 (2022).

PubMedPubMed CentralGoogle Scholar

Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

PubMedGoogle Scholar

Laurent, G. S., Hammell, N. & McCaffrey, T. A. A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech. Ageing Dev. 131, 299–305 (2010).

PubMed CentralGoogle Scholar

Ricci, M., Peona, V., Boattini, A. & Taccioli, C. Comparative analysis of bats and rodents’ genomes suggests a relation between non-LTR retrotransposons, cancer incidence, and ageing. Sci. Rep. 13, 9039 (2023).

PubMedPubMed CentralGoogle Scholar

Cecco, M. D. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

PubMedPubMed CentralGoogle Scholar

Ramini, D. et al. Replicative senescence-associated LINE1 methylation and LINE1-Alu expression levels in human endothelial cells. Cells 11, 3799 (2022).

PubMedPubMed CentralGoogle Scholar

Malki, S., van der Heijden, G. W., O’Donnell, K. A., Martin, S. L. & Bortvin, A. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev. Cell 29, 521–533 (2014).

PubMedPubMed CentralGoogle Scholar

Marasca, F. et al. LINE1 are spliced in non-canonical transcript variants to regulate T cell quiescence and exhaustion. Nat. Genet. 54, 180–193 (2022).

PubMedGoogle Scholar

Burton, A. et al. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat. Cell Biol. 22, 767–778 (2020).

PubMedPubMed CentralGoogle Scholar

Camacho, O. V. et al. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 6, e25293 (2017).

Google Scholar

Creamer, K. M., Kolpa, H. J. & Lawrence, J. B. Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol. Cell 81, 3509–3525.e5 (2021).

PubMedPubMed CentralGoogle Scholar

Percharde, M. et al. A LINE1–nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405.e19 (2018).

PubMedPubMed CentralGoogle Scholar

Schneider, B. K. et al. Expression of retrotransposons contributes to aging in Drosophila. Geneticshttps://doi.org/10.1093/genetics/iyad073 (2023).

Erwin, J. A. et al. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat. Neurosci. 19, 1583–1591 (2016).

PubMedPubMed CentralGoogle Scholar

Dumitrache, L. C. & McKinnon, P. J. Out of LINE: transposons, genome integrity, and neurodegeneration. Neuron 110, 3217–3219 (2022).

PubMedGoogle Scholar

Kines, K. J., Sokolowski, M., deHaro, D. L., Christian, C. M. & Belancio, V. P. Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci. Nucleic Acids Res. 42, 10488–10502 (2014).

PubMedPubMed CentralGoogle Scholar

Copley, K. E. & Shorter, J. Repetitive elements in aging and neurodegeneration. Trends Genet. 39, 381–400 (2023).

PubMedPubMed CentralGoogle Scholar

Luqman-Fatah, A. & Miyoshi, T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet. Syst. https://doi.org/10.1266/ggs.22-00038 (2022).

Morris, B. J., Willcox, B. J. & Donlon, T. A. Genetic and epigenetic regulation of human aging and longevity. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1718–1744 (2019).

PubMedGoogle Scholar

Sasaki, H. et al. Impact of oxidative stress on age-associated decline in oocyte developmental competence. Front. Endocrinol. 10, 811 (2019).

Google Scholar

O’Donnell, K. A. & Burns, K. H. Mobilizing diversity: transposable element insertions in genetic variation and disease. Mob. DNA 1, 21 (2010).

PubMedPubMed CentralGoogle Scholar

Evering, T. H., Marston, J. L., Gan, L. & Nixon, D. F. Transposable elements and Alzheimer’s disease pathogenesis. Trends Neurosci. 46, 170–172 (2023).

PubMedGoogle Scholar

Gozashti, L. et al. Transposable elements drive intron gain in diverse eukaryotes. Proc. Natl Acad. Sci. USA 119, e2209766119 (2022).

PubMedPubMed CentralGoogle Scholar

Hartmann, G. Nucleic acid immunity. Adv. Immunol. 133, 121–169 (2017).

PubMedGoogle Scholar

Mu, X., Ahmad, S. & Hur, S. Endogenous retroelements and the host innate immune sensors. Adv. Immunol. 132, 47–69 (2016).

PubMedPubMed CentralGoogle Scholar

Shapiro, J. A. Epigenetic control of mobile DNA as an interface between experience and genome change. Front. Genet. 5, 87 (2014).

PubMedPubMed CentralGoogle Scholar

Protasova, M. S., Andreeva, T. V. & Rogaev, E. I. Factors regulating the activity of LINE1 retrotransposons. Genes 12, 1562 (2021).

PubMedPubMed CentralGoogle Scholar

Ferguson-Smith, A. C., Sasaki, H., Cattanach, B. M. & Surani, M. A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362, 751–755 (1993).

PubMedGoogle Scholar

Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

PubMedGoogle Scholar

Karimi, M. M. et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mescs. Cell Stem Cellhttps://doi.org/10.1016/j.stem.2011.04.004 (2011).

Bourc’his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004).

PubMedGoogle Scholar

Zamudio, N. et al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 29, 1256–1270 (2015).

PubMedPubMed CentralGoogle Scholar

Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20, 116–117 (1998).

PubMedGoogle Scholar

Hutnick, L. K., Huang, X., Loo, T.-C., Ma, Z. & Fan, G. Repression of retrotransposal elements in mouse embryonic stem cells is primarily mediated by a DNA methylation-independent mechanism. J. Biol. Chem. 285, 21082–21091 (2010).

PubMedPubMed CentralGoogle Scholar

Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

PubMedGoogle Scholar

Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

PubMedPubMed CentralGoogle Scholar

Bulut-Karslioglu, A. et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol. Cellhttps://doi.org/10.1016/j.molcel.2014.05.029 (2014).

Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

PubMedGoogle Scholar

Nishibuchi, G. & Déjardin, J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosom. Res. 25, 77–87 (2017).

Google Scholar

Grewal, S. I. S. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol. Cellhttps://doi.org/10.1016/j.molcel.2023.04.020 (2023).

Imbeault, M., Helleboid, P.-Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017).

PubMedGoogle Scholar

O’Carroll, D. et al. Isolation and characterization ofSuv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol. 20, 9423–9433 (2000).

PubMedPubMed CentralGoogle Scholar

Fukuda, K. & Shinkai, Y. SETDB1-mediated silencing of retroelements. Viruses 12, 596 (2020).

PubMedPubMed CentralGoogle Scholar

Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

PubMedGoogle Scholar

Fukagawa, T. & Kakutani, T. Transgenerational epigenetic control of constitutive heterochromatin, transposons, and centromeres. Curr. Opin. Genet. Dev. 78, 102021 (2023).

PubMedGoogle Scholar

Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010).

PubMedGoogle Scholar

Rosspopoff, O. & Trono, D. Take a walk on the KRAB side. Trends Genet. 39, 844–857 (2023).

PubMedGoogle Scholar

Osipovich, A. B. et al. ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes. PLoS Genet. 19, e1010729 (2023).

PubMedPubMed CentralGoogle Scholar

Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

PubMedPubMed CentralGoogle Scholar

Jacobs, F. M. J. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).

PubMedPubMed CentralGoogle Scholar

Thomas, J. H. & Schneider, S. Coevolution of retroelements and tandem zinc finger genes. Genome Res. 21, 1800–1812 (2011).

PubMedPubMed CentralGoogle Scholar

Castro-Diaz, N. et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 28, 1397–1409 (2014).

PubMedPubMed CentralGoogle Scholar

Pontis, J. et al. Primate-specific transposable elements shape transcriptional networks during human development. Nat. Commun. 13, 7178 (2022).

PubMedPubMed CentralGoogle Scholar

Vazquez, B. N. et al. SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Res. 47, 7870–7885 (2019).

PubMedPubMed CentralGoogle Scholar

Meter, M. V. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

PubMedGoogle Scholar

Simon, M. et al. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J. 42, e113326 (2023).

PubMedPubMed CentralGoogle Scholar

Bi, S. et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11, 483–504 (2020).

PubMedPubMed CentralGoogle Scholar

Martin, G. M. Epigenetic drift in aging identical twins. Proc. Natl. Acad. Sci. USA 102, 10413–10414 (2005).

PubMedPubMed CentralGoogle Scholar

Reynolds, C. A. et al. A decade of epigenetic change in aging twins: genetic and environmental contributions to longitudinal DNA methylation. Aging Cell 19, e13197 (2020).

PubMedPubMed CentralGoogle Scholar

Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

PubMedPubMed CentralGoogle Scholar

Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cellhttps://doi.org/10.1016/j.cell.2016.07.050 (2016).

Pal, S. & Tyler, J. K. Epigenetics and aging. Sci. Adv. 2, e1600584 (2016).

PubMedPubMed CentralGoogle Scholar

Yang, J.-H. et al. Loss of epigenetic information as a cause of mammalian aging. Cellhttps://doi.org/10.1016/j.cell.2022.12.027 (2023).

Ashapkin, V. V., Kutueva, L. I. & Vanyushin, B. F. Aging as an epigenetic phenomenon. Curr. Genomics 18, 385–407 (2017).

PubMedPubMed CentralGoogle Scholar

Du, J. et al. Chromatin variation associated with liver metabolism is mediated by transposable elements. Epigenetics Chromatin 9, 28 (2016).

PubMedPubMed CentralGoogle Scholar

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

PubMedGoogle Scholar

Bollati, V. et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 130, 234–239 (2009).

PubMedGoogle Scholar

Cecco, M. D. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging 5, 867–883 (2013).

PubMedPubMed CentralGoogle Scholar

Villeponteau, B. The heterochromatin loss model of aging. Exp. Gerontol. 32, 383–394 (1997).

PubMedGoogle Scholar

Haithcock, E. et al. Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 102, 16690–16695 (2005).

PubMedPubMed CentralGoogle Scholar

Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

PubMedPubMed CentralGoogle Scholar

Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

PubMedPubMed CentralGoogle Scholar

Emerson, F. J. & Lee, S. S. Chromatin: the old and young of it. Front. Mol. Biosci. 10, 1270285 (2023).

PubMedPubMed CentralGoogle Scholar

Maierhofer, A. et al. Accelerated epigenetic aging in Werner syndrome. Aging 9, 1143–1152 (2017).

PubMedPubMed CentralGoogle Scholar

Köhler, F. et al. Epigenetic deregulation of lamina-associated domains in Hutchinson–Gilford progeria syndrome. Genome Med. https://doi.org/10.1186/s13073-020-00749-y (2020).

Zhang, W. et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–1163 (2015).

PubMedPubMed CentralGoogle Scholar

Vigouroux, C., Caux, F., Capeau, J., Christin-Maitre, S. & Cohen, A. LMNA mutations in atypical Werner’s syndrome. Lancet 362, 1585 (2003).

PubMedGoogle Scholar

Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aginghttps://doi.org/10.18632/aging.101414 (2018).

Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

PubMedGoogle Scholar

Mendelsohn, A. R. & Larrick, J. W. Epigenetic drift is a determinant of mammalian lifespan. Rejuvenation Res. 20, 430–436 (2017).

PubMedGoogle Scholar

Sturm, Á., Ivics, Z. & Vellai, T. The mechanism of ageing: primary role of transposable elements in genome disintegration. Cell. Mol. Life Sci. 72, 1839–1847 (2015).

PubMedPubMed CentralGoogle Scholar

Andrenacci, D., Cavaliere, V. & Lattanzi, G. The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Res. Rev. 57, 100995 (2020).

PubMedGoogle Scholar

Mosaddeghi, P., Farahmandnejad, M. & Zarshenas, M. M. The role of transposable elements in aging and cancer. Biogerontologyhttps://doi.org/10.1007/s10522-023-10028-z (2023).

Talens, R. P. et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11, 694–703 (2012).

PubMedGoogle Scholar

Tan, Q., Christiansen, L., Thomassen, M., Kruse, T. A. & Christensen, K. Twins for epigenetic studies of human aging and development. Ageing Res. Rev. 12, 182–187 (2013).

PubMedGoogle Scholar

Djeghloul, D. et al. Age-associated decrease of the histone methyltransferase SUV39H1 in HSC perturbs heterochromatin and B lymphoid differentiation. Stem Cell Rep. 6, 970–984 (2016).

Google Scholar

Zhang, N. et al. Dual Inhibition of H3K9me2 and H3K27me3 promotes tumor cell senescence without triggering the secretion of SASP. Int. J. Mol. Sci. 23, 3911 (2022).

PubMedPubMed CentralGoogle Scholar

Sidler, C. et al. A role for SUV39H1-mediated H3K9 trimethylation in the control of genome stability and senescence in WI38 human diploid lung fibroblasts. Aging 6, 545–563 (2014).

PubMedPubMed CentralGoogle Scholar

Sidler, C., Li, D., Wang, B., Kovalchuk, I. & Kovalchuk, O. SUV39H1 downregulation induces deheterochromatinization of satellite regions and senescence after exposure to ionizing radiation. Front. Genet. 5, 411 (2014).

PubMedPubMed CentralGoogle Scholar

Li, L. et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat. Commun. 7, 12235 (2016).

PubMedPubMed CentralGoogle Scholar

Xu, C. et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 22, 1170–1179 (2020).

PubMedPubMed CentralGoogle Scholar

Chen, R., Ishak, C. A. & Carvalho, D. D. D. Endogenous retroelements and the viral mimicry response in cancer therapy and cellular homeostasis. Cancer Discov. 11, 2707–2725 (2021).

PubMedGoogle Scholar

ueda, M. T. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet. Syst. 98, 305–319 (2023).

Google Scholar

Russ, E. & Iordanskiy, S. Endogenous retroviruses as modulators of innate immunity. Pathogens 12, 162 (2023).

PubMedPubMed CentralGoogle Scholar

Grandi, N. & Tramontano, E. Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front. Immunol. 9, 2039 (2018).

PubMedPubMed CentralGoogle Scholar

Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).

PubMedGoogle Scholar

Hale, B. G. Antiviral immunity triggered by infection-induced host transposable elements. Curr. Opin. Virol. 52, 211–216 (2022).

PubMedGoogle Scholar

Kuriyama, Y. et al. Coordination of retrotransposons and type I interferon with distinct interferon pathways in dermatomyositis, systemic lupus erythematosus and autoimmune blistering disease. Sci. Rep. 11, 23146 (2021).

PubMedPubMed CentralGoogle Scholar

Zhou, S., Liu, L. & Lu, X. Endogenous retroviruses make aging go viral. Life Med. 2, lnad001 (2023).

PubMedPubMed CentralGoogle Scholar

Cardelli, M. & Marchegiani, F. Good, bad, mobile elements: genome’s most successful “parasites” as emerging players in cell and organismal aging. Curr. Pharm. Des. 19, 1739–1752 (2013).

PubMedGoogle Scholar

Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

PubMedPubMed CentralGoogle Scholar

Cardelli, M. The epigenetic alterations of endogenous retroelements in aging. Mech. Ageing Dev. 174, 30–46 (2018).

PubMedGoogle Scholar

Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

PubMedPubMed CentralGoogle Scholar

Sadeq, S., Al-Hashimi, S., Cusack, C. M. & Werner, A. Endogenous double-stranded RNA. Noncoding RNA 7, 15 (2021).

PubMedPubMed CentralGoogle Scholar

Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319–331.e8 (2017).

PubMedPubMed CentralGoogle Scholar

Uggenti, C. et al. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat. Genet. 52, 1364–1372 (2020).

PubMedGoogle Scholar

Ehlhardt, S. et al. Human endogenous retrovirus HERV-K (HML-2) Rec expression and transcriptional activities in normal and rheumatoid arthritis synovia. J. Rheumatol. 33, 16–23 (2006).

PubMedGoogle Scholar

Freimanis, G. et al. A role for human endogenous retrovirus‐K (HML‐2) in rheumatoid arthritis: investigating mechanisms of pathogenesis. Clin. Exp. Immunol. 160, 340–347 (2010).

PubMedPubMed CentralGoogle Scholar

Reynier, F. et al. Increase in human endogenous retrovirus HERV‐K (HML‐2) viral load in active rheumatoid arthritis. Scand. J. Immunol. 70, 295–299 (2009).

PubMedGoogle Scholar

Mangiavacchi, A. et al. LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response. EMBO J. https://doi.org/10.1038/s44318-024-00143-z (2024).

Martinez, J. C., Seluanov, A. & Gorbunova, V. LINE1 and its host: one cell’s junk is another cell’s treasure. EMBO J. 43, 3547–3549 (2024).

PubMedPubMed CentralGoogle Scholar

Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-022-00457-y (2022).

Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510 (2017).

PubMedGoogle Scholar

Jachowicz, J. W. & Torres-Padilla, M.-E. LINEs in mice: features, families, and potential roles in early development. Chromosoma 125, 29–39 (2016).

PubMedGoogle Scholar

Hall, L. L. et al. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156, 907–919 (2014).

PubMedPubMed CentralGoogle Scholar

Pabis, K., Barardo, D., Selvarajoo, K., Gruber, J. & Kennedy, B. K. A concerted increase in readthrough and intron retention drives transposon expression during aging and senescence. eLifehttps://doi.org/10.7554/elife.87811 (2023).

Burattin, F. V. et al. LINE1 modulate human T cell function by regulating protein synthesis during the life span. Sci. Adv. 10, eado2134 (2024).

PubMedPubMed CentralGoogle Scholar

Horváth, V. et al. Gene expression differences consistent with water loss reduction underlie desiccation tolerance of natural Drosophila populations. BMC Biol. 21, 35 (2023).

PubMedPubMed CentralGoogle Scholar

Bertoldo, M. J. et al. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep. 30, 1670–1681.e7 (2020).

PubMedPubMed CentralGoogle Scholar

Cui, R. et al. Relaxed selection limits lifespan by increasing mutation load. Cell 178, 385–399.e20 (2019).

PubMedGoogle Scholar

Green, L. et al. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biol. 20, 275 (2022).

PubMedPubMed CentralGoogle Scholar

Farkash, E. A., Kao, G. D., Horman, S. R. & Prak, E. T. L. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res. 34, 1196–1204 (2006).

PubMedPubMed CentralGoogle Scholar

Zovoilis, A., Cifuentes-Rojas, C., Chu, H.-P., Hernandez, A. J. & Lee, J. T. Destabilization of B2 RNA by EZH2 activates the stress response. Cell 167, 1788–1802.e13 (2016).

PubMedPubMed CentralGoogle Scholar

Negro-Vilar, A. Stress and other environmental factors affecting fertility in men and women: overview. Environ. Heal. Perspect. 101, 59–64 (1993).

Google Scholar

Karlsson, O. & Baccarelli, A. A. Environmental health and long non-coding RNAs. Curr. Environ. Health Rep. https://doi.org/10.1007/s40572-016-0092-1 (2016).

Reddam, A. et al. Air pollution and human endogenous retrovirus methylation in the school inner-city asthma intervention study. Toxicol. Sci. 193, 166–174 (2023).

PubMedPubMed CentralGoogle Scholar

Said, N. H. E. et al. Malat-1–PRC2–EZH1 interaction supports adaptive oxidative stress dependent epigenome remodeling in skeletal myotubes. Cell Death Dis. 12, 850 (2021).

PubMedPubMed CentralGoogle Scholar

Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).

PubMedPubMed CentralGoogle Scholar

Simon, M., Emmrich, S., Seluanov, A. & Gorbunova, V. A hairy tale: SIRT7 safeguards skin stem cells during aging. EMBO J. 39, e106294 (2020).

PubMedPubMed CentralGoogle Scholar

Chelmicki, T. et al. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 591, 312–316 (2021).

PubMedGoogle Scholar

Kale, S. P., Carmichael, M. C., Harris, K. & Roy-Engel, A. M. The L1 retrotranspositional stimulation by particulate and soluble cadmium exposure is independent of the generation of DNA breaks. Int. J. Environ. Res. Public Health 3, 121–128 (2006).

PubMedPubMed CentralGoogle Scholar

Nair-Shalliker, V., Dhillon, V., Clements, M., Armstrong, B. K. & Fenech, M. The association between personal sun exposure, serum vitamin D and global methylation in human lymphocytes in a population of healthy adults in South Australia. Mutat. Res. 765, 6–10 (2014).

PubMedGoogle Scholar

Morales, J. F., Snow, E. T. & Murnane, J. P. Environmental factors affecting transcription of the human L1 retrotransposon. II. Stressors. Mutagenesis 18, 151–158 (2003).

PubMedGoogle Scholar

Rockwood, L. D., Felix, K. & Janz, S. Elevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma. Mutat. Res. 548, 117–125 (2004).

PubMedGoogle Scholar

Stribinskis, V. & Ramos, K. S. Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res. 66, 2616–2620 (2006).

PubMedGoogle Scholar

Koturbash, I. et al. Epigenetic alterations in liver of C57BL/6J mice after short-term inhalational exposure to 1,3-butadiene. Environ. Health Perspect. 119, 635–640 (2011).

PubMedGoogle Scholar

Wright, R. O. et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ. Health Perspect. 118, 790–795 (2010).

PubMedPubMed CentralGoogle Scholar

Lambrou, A. et al. Arsenic exposure and DNA methylation among elderly men. Epidemiology 23, 668–676 (2012).

PubMedPubMed CentralGoogle Scholar

Wahl, D., Cavalier, A. N., Smith, M., Seals, D. R. & LaRocca, T. J. Healthy aging interventions reduce repetitive element transcripts. J. Gerontol. Ser. 76, 805–810 (2020).

Google Scholar

Maugeri, A. et al. The relationship between body mass index, obesity, and LINE-1 methylation: a cross-sectional study on women from southern Italy. Dis. Markers 2021, 9910878 (2021).

PubMedPubMed CentralGoogle Scholar

Calderwood, S. K., Murshid, A. & Prince, T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review. Gerontology 55, 550–558 (2009).

PubMedPubMed CentralGoogle Scholar

Hummel, B. et al. The evolutionary capacitor HSP90 buffers the regulatory effects of mammalian endogenous retroviruses. Nat. Struct. Mol. Biol. 24, 234–242 (2017).

PubMedGoogle Scholar

Mariner, P. D. et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29, 499–509 (2008).

PubMedGoogle Scholar

Huang, Z. et al. Longitudinal comparative transcriptomics reveals unique mechanisms underlying extended healthspan in bats. Nat. Ecol. Evol. 3, 1110–1120 (2019).

PubMedGoogle Scholar

Huang, Z., Whelan, C. V., Dechmann, D. & Teeling, E. C. Genetic variation between long-lived versus short-lived bats illuminates the molecular signatures of longevity. Aging 12, 15962–15977 (2020).

PubMedPubMed CentralGoogle Scholar

Huang, Z., Jebb, D. & Teeling, E. C. Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis. BMC Genom. 17, 906 (2016).

Google Scholar

Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).

PubMedPubMed CentralGoogle Scholar

Wilkinson, G. S. & South, J. M. Life history, ecology and longevity in bats. Aging Cell 1, 124–131 (2002).

PubMedGoogle Scholar

Zhang, Z. et al. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice. Naturehttps://doi.org/10.1038/s41586-023-06463-0 (2023).

Takasugi, M. et al. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat. Commun. 11, 2376 (2020).

PubMedPubMed CentralGoogle Scholar

Oka, K., Yamakawa, M., Kawamura, Y., Kutsukake, N. & Miura, K. The naked mole-rat as a model for healthy aging. Annu. Rev. Anim. Biosci. 11, 207–226 (2022).

PubMedGoogle Scholar

MacRae, S. L. et al. DNA repair in species with extreme lifespan differences. Aging 7, 1171–1182 (2015).

PubMedPubMed CentralGoogle Scholar

Tian, X. et al. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell 177, 622–638.e22 (2019).

PubMedPubMed CentralGoogle Scholar

Veschetti, L., Treccani, M., Tomi, E. D. & Malerba, G. Genomic instability evolutionary footprints on human health: driving forces or side effects? Int. J. Mol. Sci. 24, 11437 (2023).

PubMedPubMed CentralGoogle Scholar

Kell, L., Simon, A. K., Alsaleh, G. & Cox, L. S. The central role of DNA damage in immunosenescence. Front. Aging 4, 1202152 (2023).

PubMedPubMed CentralGoogle Scholar

Belancio, V. P., Hedges, D. J. & Deininger, P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 18, 343–358 (2008).

PubMedGoogle Scholar

Chatsirisupachai, K. & de Magalhães, J. P. Somatic mutations in human ageing: new insights from DNA sequencing and inherited mutations. Ageing Res. Rev. 96, 102268 (2024).

PubMedGoogle Scholar

Sakai, H., Koyanagi, K. O., Imanishi, T., Itoh, T. & Gojobori, T. Frequent emergence and functional resurrection of processed pseudogenes in the human and mouse genomes. Gene 389, 196–203 (2007).

PubMedGoogle Scholar

DeBerardinis, R. J., Goodier, J. L., Ostertag, E. M. & Kazazian, H. H. Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. Nat. Genet. 20, 288–290 (1998).

PubMedGoogle Scholar

Moffat-Wilson, K. A. & Devor, E. J. Molecular and temporal characteristics of human retropseudogenes. Hum. Biol. 75, 661–672 (2003).

PubMedGoogle Scholar

Zocher, S. et al. Lifelong persistence of nuclear RNAs in the mouse brain. Science 384, 53–59 (2024).

PubMedPubMed CentralGoogle Scholar

Lawrence, J. & Hall, L. Exceptionally long-lived nuclear RNAs. Science 384, 31–32 (2024).

PubMedPubMed CentralGoogle Scholar

Macchietto, M. G., Langlois, R. A. & Shen, S. S. Virus-induced transposable element expression up-regulation in human and mouse host cells. Life Sci. Alliance 3, e201900536 (2020).

PubMedPubMed CentralGoogle Scholar

Mostoufi, S. L. & Singh, N. D. Pathogen infection alters the gene expression landscape of transposable elements in Drosophila melanogaster. G3 Genes Genomes Genet. 14, jkae171 (2024).

Google Scholar

Jacobsen, H. & Klein, S. L. Sex differences in immunity to viral infections. Front. Immunol. 12, 720952 (2021).

PubMedPubMed CentralGoogle Scholar

Bartonicek, N. et al. The retroelement Lx9 puts a brake on the immune response to virus infection. Naturehttps://doi.org/10.1038/s41586-022-05054-9 (2022).

Galkin, F., Kovalchuk, O., Koldasbayeva, D., Zhavoronkov, A. & Bischof, E. Stress, diet, exercise: common environmental factors and their impact on epigenetic age. Ageing Res. Rev. 88, 101956 (2023).

PubMedGoogle Scholar

Brouwers, S. J., Janssens, G. E. & Spiegel, T. Attitudes towards geroprotection: measuring willingness, from lifestyle changes to drug use. Front. Aging 5, 1440661 (2024).

PubMedPubMed CentralGoogle Scholar

DeRosa, H., Richter, T., Wilkinson, C. & Hunter, R. G. Bridging the gap between environmental adversity and neuropsychiatric disorders: the role of transposable elements. Front. Genet. 13, 813510 (2022).

PubMedPubMed CentralGoogle Scholar

Lapp, H. E. & Hunter, R. G. Early life exposures, neurodevelopmental disorders, and transposable elements. Neurobiol. Stress. 11, 100174 (2019).

PubMedPubMed CentralGoogle Scholar

Marques-Rocha, J. L. et al. LINE-1 methylation is positively associated with healthier lifestyle but inversely related to body fat mass in healthy young individuals. Epigenetics 11, 49–60 (2016).

PubMedPubMed CentralGoogle Scholar

Download references

Author information

Authors and Affiliations

Altos Labs, San Diego Institute of Science, San Diego, CA, USA

Francesco Della Valle, Pradeep Reddy, Alain Aguirre Vazquez & Juan Carlos Izpisua Belmonte

Authors

Francesco Della Valle

View author publications

You can also search for this author inPubMedGoogle Scholar

2. Pradeep Reddy

View author publications

You can also search for this author inPubMedGoogle Scholar

3. Alain Aguirre Vazquez

View author publications

You can also search for this author inPubMedGoogle Scholar

4. Juan Carlos Izpisua Belmonte

View author publications

You can also search for this author inPubMedGoogle Scholar

Contributions

F.D.V. and P.R. researched data for the article. J.C.I.B., F.D.V., A.A.V. and P.R. contributed substantially to the discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Juan Carlos Izpisua Belmonte.

Ethics declarations

Competing interests

The authors are employees of Altos Labs.

Peer review

Peer review information

Nature Reviews Genetics thanks Berenice Benayoun, who co-reviewed with Juan Bravo; Vera Gorbunova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Valle, F., Reddy, P., Aguirre Vazquez, A. et al. Reactivation of retrotransposable elements is associated with environmental stress and ageing. Nat Rev Genet (2025). https://doi.org/10.1038/s41576-025-00829-y

Download citation

Accepted:27 February 2025

Published:02 April 2025

DOI:https://doi.org/10.1038/s41576-025-00829-y

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page