nature.com

Cutaneous melanoma

Abstract

Cutaneous melanoma is a common cancer in Australia and New Zealand, Europe, and North America, and its incidence is still increasing in many regions. Ultraviolet (UV) radiation exposure (for example, through excessive sunlight exposure) remains the primary risk factor for melanoma; however, public awareness campaigns have led to a marked reduction in mortality. In addition to genetic damage from UV radiation, specific genetic alterations have been linked to melanoma. The stage of the tumour at the time of diagnosis is of greater importance for melanoma prognosis than in almost any other cancer. Context-dependent genetic mutations that attenuate tumour-suppressive mechanisms or activate growth-promoting signalling pathways are crucial factors in the development of cutaneous melanoma. In addition to external factors such as UV radiation, the tumour microenvironment can contribute to melanoma progression, invasion and metastasis. Cutaneous melanoma treatment has improved considerably over the past decade with the discovery and development of immune checkpoint inhibitors and therapy targeting BRAF and MEK. Over the next decade, several priorities are likely to influence melanoma research and management, including the continued advance of precision medicine methods to identify the most suitable patients for the most effective treatment, with the aim of improving clinical outcomes.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 1 digital issues and online access to articles

$119.00 per year

only $119.00 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Disease progression in melanoma.

Fig. 2: Global epidemiology of melanoma.

Fig. 3: Molecular mechanisms in melanoma pathogenesis.

Fig. 4: The role of the TME in melanoma.

Fig. 5: Clinical and dermoscopic images of primary cutaneous melanomas.

Fig. 6: Clinical and dermoscopic images of primary cutaneous melanomas in patients with darker skin tones.

Fig. 7: Digital monitoring of melanoma.

References

Centeno, P. P., Pavet, V. & Marais, R. The journey from melanocytes to melanoma. Nat. Rev. Cancer 23, 372–390 (2023). This review provides a comprehensive overview of the transformation process from normal melanocytes to malignant melanoma cells.

ArticleCASPubMedGoogle Scholar

Arnold, M. et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 158, 495–503 (2022). This study provides a comprehensive analysis of melanoma incidence and mortality worldwide, emphasizing the need for effective prevention, early detection and treatment strategies to mitigate this growing burden.

ArticlePubMedPubMed CentralGoogle Scholar

Tas, F. & Erturk, K. Major histotypes in skin melanoma: nodular and acral lentiginous melanomas are poor prognostic factors for relapse and survival. Am. J. Dermatopathol. 44, 799–805 (2022).

ArticlePubMedGoogle Scholar

Green, A. C., Wallingford, S. C. & McBride, P. Childhood exposure to ultraviolet radiation and harmful skin effects: epidemiological evidence. Prog. Biophys. Mol. Biol. 107, 349–355 (2011).

ArticlePubMedPubMed CentralGoogle Scholar

Noonan, F. P., Dudek, J., Merlino, G. & De Fabo, E. C. Animal models of melanoma: an HGF/SF transgenic mouse model may facilitate experimental access to UV initiating events. Pigment. Cell Res. 16, 16–25 (2003).

ArticleCASPubMedGoogle Scholar

Visser, M., van der Stoep, N. & Gruis, N. Progress report on the major clinical advances in patient-oriented research into familial melanoma (2013–2018). Fam. Cancer 18, 267–271 (2019).

ArticlePubMedGoogle Scholar

Ribeiro Moura Brasil Arnaut, J. et al. Molecular landscape of hereditary melanoma. Crit. Rev. Oncol. Hematol. 164, 103425 (2021).

ArticlePubMedGoogle Scholar

Otero, C. et al. Dermoscopic, confocal and histopathologic characteristics of small-diameter melanomas (minimelanoma): a cross sectional study. Australas. J. Dermatol. 62, e256–e261 (2021).

ArticlePubMedGoogle Scholar

Pupelli, G. et al. Small-diameter melanocytic lesions: morphological analysis by means of in vivo confocal microscopy. Br. J. Dermatol. 168, 1027–1033 (2013).

ArticleCASPubMedGoogle Scholar

Megaris, A. et al. Dermoscopy features of melanomas with a diameter up to 5 mm (micromelanomas): a retrospective study. J. Am. Acad. Dermatol. 83, 1160–1161 (2020).

ArticlePubMedGoogle Scholar

Garbe, C. et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: diagnostics – update 2024. Eur. J. Cancer 215, 115152 (2025).

ArticlePubMedGoogle Scholar

Garbe, C. et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: treatment – update 2024. Eur. J. Cancer 215, 115153 (2025). Together with Part 1 of this guideline (Garbe et al. (2025)), this publication provides the latest diagnostic and therapy guidelines in Europe that are valid until the end of 2026.

ArticlePubMedGoogle Scholar

Lin, X. et al. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 23, 108 (2024).

ArticlePubMedPubMed CentralGoogle Scholar

McLaughlin, C. C. et al. Incidence of noncutaneous melanomas in the U.S. Cancer 103, 1000–1007 (2005).

ArticlePubMedGoogle Scholar

International Agency for Research on Cancer. Data Visualization Tools for Exploring the Global Cancer Burden in 2022. Cancer Todaygco.iarc.who.int/today (2024).

Brunsgaard, E. K., Wu, Y. P. & Grossman, D. Melanoma in skin of color: part I. Epidemiology and clinical presentation. J. Am. Acad. Dermatol. 89, 445–456 (2023). This paper highlights the importance of skin of colour (SOC) in the diagnosis of melanoma and focuses on the epidemiology and clinical presentation of melanoma in individuals with SOC.

ArticlePubMedGoogle Scholar

Garbe, C. et al. Epidemiology of cutaneous melanoma and keratinocyte cancer in white populations 1943-2036. Eur. J. Cancer 152, 18–25 (2021).

ArticlePubMedGoogle Scholar

International Agency for Research on Cancer. Comparable Cancer Statistics for Denmark, Finland, Iceland, Norway, Sweden, the Faroe Islands, and Greenland. NORDCANnordcan.iarc.fr/ (2023).

De Pinto, G. et al. Global trends in cutaneous malignant melanoma incidence and mortality. Melanoma Res. https://doi.org/10.1097/CMR.0000000000000959 (2024).

Erdmann, F. et al. International trends in the incidence of malignant melanoma 1953–2008 – are recent generations at higher or lower risk? Int. J. Cancer 132, 385–400 (2013).

ArticleCASPubMedGoogle Scholar

Keim, U. et al. Cutaneous melanoma attributable to UVR exposure in Denmark and Germany. Eur. J. Cancer 159, 98–104 (2021).

ArticlePubMedGoogle Scholar

Welch, H. G., Mazer, B. L. & Adamson, A. S. The rapid rise in cutaneous melanoma diagnoses. N. Engl. J. Med. 384, 72–79 (2021).

ArticlePubMedGoogle Scholar

International Agency for Research on Cancer. Trends in Cancer Incidence and Mortality Rates. Cancer Over Timegco.iarc.fr/overtime/en (2024).

Boer, F. L. et al. Trends in incidence and survival of 1496 patients with mucosal melanoma in The Netherlands (1990-2019). Cancers 15, 1541 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Cui, C. et al. An evidence-based staging system for mucosal melanoma: a proposal. Ann. Surg. Oncol. 29, 5221–5234 (2022).

ArticlePubMedGoogle Scholar

Leeneman, B. et al. Stage-specific trends in incidence and survival of cutaneous melanoma in the Netherlands (2003-2018): a nationwide population-based study. Eur. J. Cancer 154, 111–119 (2021).

ArticlePubMedGoogle Scholar

Eisemann, N. et al. Longer survival from melanoma in Germany. Dtsch. Arztebl Int. 121, 45–51 (2024).

PubMedPubMed CentralGoogle Scholar

Smith, A. J., Lambert, P. C. & Rutherford, M. J. Understanding the impact of sex and stage differences on melanoma cancer patient survival: a SEER-based study. Br. J. Cancer 124, 671–677 (2021).

ArticlePubMedGoogle Scholar

Di Carlo, V. et al. Sex differences in survival from melanoma of the skin: the role of age, anatomic location and stage at diagnosis: a CONCORD-3 study in 59 countries. Eur. J. Cancer 217, 115213 (2025).

ArticlePubMedGoogle Scholar

Crocetti, E. et al. Survival of patients with skin melanoma in Europe increases further: results of the EUROCARE-5 study. Eur. J. Cancer 51, 2179–2190 (2015).

ArticlePubMedGoogle Scholar

Conforti, C. & Zalaudek, I. Epidemiology and risk factors of melanoma: a review. Dermatol. Pract. Concept. 11, e2021161S (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Stanienda-Sokol, K. et al. Primary locations of malignant melanoma lesions depending on patients’ gender and age. Asian Pac. J. Cancer Prev. 18, 3081–3086 (2017).

PubMedPubMed CentralGoogle Scholar

Raimondi, S., Suppa, M. & Gandini, S. Melanoma epidemiology and sun exposure. Acta Derm. Venereol. 100, adv00136 (2020).

ArticleCASPubMedGoogle Scholar

Campillo, P. et al. International incidence of melanoma in heart transplant recipients: a meta-analysis. Melanoma Res. 35, 24–30 (2025).

ArticlePubMedGoogle Scholar

Landi, M. T. et al. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat. Genet. 52, 494–504 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Goldstein, A. M. et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 66, 9818–9828 (2006).

ArticleCASPubMedGoogle Scholar

Goldstein, A. M. et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J. Med. Genet. 44, 99–106 (2007).

ArticleCASPubMedGoogle Scholar

Wiesner, T. et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat. Genet. 43, 1018–1021 (2011).

ArticleCASPubMedPubMed CentralGoogle Scholar

O’Shea, S. J. et al. A population-based analysis of germline BAP1 mutations in melanoma. Hum. Mol. Genet. 26, 717–728 (2017).

PubMedPubMed CentralGoogle Scholar

Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013). This paper identified a disease-segregating germline mutation in the TERT promoter in a family predisposed to melanoma and found additional TERT promoter mutations in a high percentage of sporadic melanomas and melanoma cell lines.

ArticleCASPubMedGoogle Scholar

Robles-Espinoza, C. D., del Castillo Velasco-Herrera, M., Hayward, N. K. & Adams, D. J. Telomere-regulating genes and the telomere interactome in familial cancers. Mol. Cancer Res. 13, 211–222 (2015).

ArticleCASPubMedGoogle Scholar

Shi, J. et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 46, 482–486 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

Aoude, L. G. et al. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J. Natl Cancer Inst. 107, dju408 (2015).

ArticlePubMedGoogle Scholar

Potrony, M. et al. Update in genetic susceptibility in melanoma. Ann. Transl. Med. 3, 210 (2015).

PubMedPubMed CentralGoogle Scholar

Gumaste, P. V. et al. Skin cancer risk in BRCA1/2 mutation carriers. Br. J. Dermatol. 172, 1498–1506 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ward, K. A., Lazovich, D. & Hordinsky, M. K. Germline melanoma susceptibility and prognostic genes: a review of the literature. J. Am. Acad. Dermatol. 67, 1055–1067 (2012).

ArticlePubMedGoogle Scholar

Eggermont, A. M., Spatz, A. & Robert, C. Cutaneous melanoma. Lancet 383, 816–827 (2014).

ArticleCASPubMedGoogle Scholar

Hawryluk, E. B. & Tsao, H. Melanoma: clinical features and genomic insights. Cold Spring Harb. Perspect. Med. 4, a015388 (2014).

ArticlePubMedPubMed CentralGoogle Scholar

Zanna, I. et al. Germline MC1R variants and frequency of somatic BRAF, NRAS, and TERT mutations in melanoma: literature review and meta-analysis. Mol. Carcinog. 60, 167–171 (2021).

ArticleCASPubMedGoogle Scholar

Fargnoli, M. C., Gandini, S., Peris, K., Maisonneuve, P. & Raimondi, S. MC1R variants increase melanoma risk in families with CDKN2A mutations: a meta-analysis. Eur. J. Cancer 46, 1413–1420 (2010).

ArticleCASPubMedGoogle Scholar

Young, A. R. et al. Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers. J. Invest. Dermatol. 111, 936–940 (1998).

ArticleCASPubMedGoogle Scholar

Fadadu, R. P. & Wei, M. L. Ultraviolet A radiation exposure and melanoma: a review. Melanoma Res. 32, 405–410 (2022).

ArticleCASPubMedGoogle Scholar

Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015). In cutaneous melanoma, this paper represents the initial TCGA data which described the landscape of genomic alterations in melanoma and is a landmark paper that serves as the starting point to all genomic analysis in melanoma.

ArticleGoogle Scholar

Krauthammer, M. et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat. Genet. 47, 996–1002 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Shain, A. H. et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat. Genet. 47, 1194–1199 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kollias, N., Sayre, R. M., Zeise, L. & Chedekel, M. R. Photoprotection by melanin. J. Photochem. Photobiol. B 9, 135–160 (1991).

ArticleCASPubMedGoogle Scholar

Raposo, G. & Marks, M. S. Melanosomes-dark organelles enlighten endosomal membrane transport. Nat. Rev. Mol. Cell Biol. 8, 786–797 (2007).

ArticleCASPubMedPubMed CentralGoogle Scholar

Scott, M. C. et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J. Cell Sci. 115, 2349–2355 (2002).

ArticleCASPubMedGoogle Scholar

Cassidy, P. B., Abdel-Malek, Z. A. & Leachman, S. A. Beyond red hair and sunburns: uncovering the molecular mechanisms of MC1R signaling and repair of UV-induced DNA damage. J. Invest. Dermatol. 135, 2918–2921 (2015).

ArticleCASPubMedPubMed CentralGoogle Scholar

Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

ArticleCASPubMedGoogle Scholar

Bastian, B. C. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu. Rev. Pathol. 9, 239–271 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

van Poppelen, N. M. et al. Genetics of ocular melanoma: insights into genetics, inheritance and testing. Int. J. Mol. Sci. 22, 336 (2020).

ArticlePubMedPubMed CentralGoogle Scholar

Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Elder, D. E., Bastian, B. C., Cree, I. A., Massi, D. & Scolyer, R. A. The 2018 World Health Organization classification of cutaneous, mucosal, and uveal melanoma: detailed analysis of 9 distinct subtypes defined by their evolutionary pathway. Arch. Pathol. Lab. Med. 144, 500–522 (2020).

ArticleCASPubMedGoogle Scholar

Maldonado, J. L. et al. Determinants of BRAF mutations in primary melanomas. J. Natl Cancer Inst. 95, 1878–1890 (2003).

ArticleCASPubMedGoogle Scholar

Whiteman, D. C. et al. Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J. Natl Cancer Inst. 95, 806–812 (2003).

ArticlePubMedGoogle Scholar

Vredeveld, L. C. et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes. Dev. 26, 1055–1069 (2012).

ArticleCASPubMedPubMed CentralGoogle Scholar

Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

ArticleCASPubMedGoogle Scholar

Kiuru, M. & Busam, K. J. The NF1 gene in tumor syndromes and melanoma. Lab. Invest. 97, 146–157 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Davis, E. J., Johnson, D. B., Sosman, J. A. & Chandra, S. Melanoma: what do all the mutations mean? Cancer 124, 3490–3499 (2018).

ArticlePubMedGoogle Scholar

Hayes, T. K. et al. A functional landscape of resistance to MEK1/2 and CDK4/6 inhibition in NRAS-mutant melanoma. Cancer Res. 79, 2352–2366 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Holt, M. E. et al. My cancer genome: coevolution of precision oncology and a molecular oncology knowledgebase. JCO Clin. Cancer Inf. 5, 995–1004 (2021).

ArticleGoogle Scholar

Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012). This paper shows that the range of driver mutations provides irrefutable genomic evidence for a direct mutagenic role of UV light in the pathogenesis of melanoma.

ArticleCASPubMedPubMed CentralGoogle Scholar

Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017). This paper builds on TCGA analysis but summarizes the landscape of genetic and genomic alterations in melanoma across non-aural cutaneous, acral cutaneous and mucosal melanoma, highlighting the differences in tumour mutational burden and copy number alterations across the subtypes.

ArticleCASPubMedGoogle Scholar

Moran, B., Silva, R., Perry, A. S. & Gallagher, W. M. Epigenetics of malignant melanoma. Semin. Cancer Biol. 51, 80–88 (2018).

ArticleCASPubMedGoogle Scholar

Conway, K. et al. Characterization of the CpG island hypermethylated phenotype subclass in primary melanomas. J. Invest. Dermatol. 142, 1869–1881.e10 (2022).

ArticleCASPubMedGoogle Scholar

Zhong, F. et al. Reshaping the tumour immune microenvironment in solid tumours via tumour cell and immune cell DNA methylation: from mechanisms to therapeutics. Br. J. Cancer 129, 24–37 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Trotta, A. P. et al. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition. J. Biol. Chem. 292, 11727–11739 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kimm, M. A. et al. Tumor-associated macrophages – implications for molecular oncology and imaging. Biomedicines 9, 374 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Pedri, D., Karras, P., Landeloos, E., Marine, J. C. & Rambow, F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J. 289, 1352–1368 (2022).

ArticleCASPubMedGoogle Scholar

Hoek, K. S. et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment. Cell Res. 19, 290–302 (2006).

ArticleCASPubMedGoogle Scholar

Lim, S. Y., Pedersen, B. & Rizos, H. Protein-based classification of melanoma differentiation subtypes. Pigment. Cell Melanoma Res. 35, 471–473 (2022).

ArticleCASPubMedGoogle Scholar

Massi, D., Mihic-Probst, D., Schadendorf, D., Dummer, R. & Mandala, M. Dedifferentiated melanomas: morpho-phenotypic profile, genetic reprogramming and clinical implications. Cancer Treat. Rev. 88, 102060 (2020).

ArticleCASPubMedGoogle Scholar

Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

ArticleCASPubMedGoogle Scholar

Kirkwood, J. M. et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol. 14, 7–17 (1996).

ArticleCASPubMedGoogle Scholar

Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

ArticleCASPubMedGoogle Scholar

Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

ArticleCASPubMedGoogle Scholar

Lee, N., Zakka, L. R., Mihm, M. C. Jr. & Schatton, T. Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology 48, 177–187 (2016).

ArticlePubMedGoogle Scholar

Ohue, Y. & Nishikawa, H. Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target. Cancer Sci. 110, 2080–2089 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

ArticleCASPubMedGoogle Scholar

Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

ArticleCASPubMedGoogle Scholar

Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018). Together with Cabrita et al. (2020) and Petitprez et al. (2020), this paper demonstrates that tertiary lymphoid structures play a pivotal role in the immune microenvironment of melanoma, as evidenced by the expression of distinct T cell phenotypes.

ArticleCASPubMedPubMed CentralGoogle Scholar

Hsieh, W. C. et al. Spatial multi-omics analyses of the tumor immune microenvironment. J. Biomed. Sci. 29, 96 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

ArticleCASPubMedGoogle Scholar

Bravo, A. I. et al. HEV-associated dendritic cells are observed in metastatic tumor-draining lymph nodes of cutaneous melanoma patients with longer distant metastasis-free survival after adjuvant immunotherapy. Front. Immunol. 14, 1231734 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Ugolini, F., Pasqualini, E., Simi, S., Baroni, G. & Massi, D. Bright-field multiplex immunohistochemistry assay for tumor microenvironment evaluation in melanoma tissues. Cancers 14, 3682 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Sun, Z., Nyberg, R., Wu, Y., Bernard, B. & Redmond, W. L. Developing an enhanced 7-color multiplex IHC protocol to dissect immune infiltration in human cancers. PLoS ONE 16, e0247238 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

De Logu, F. et al. Spatial proximity and relative distribution of tumor-infiltrating lymphocytes and macrophages predict survival in melanoma. Lab. Invest. 103, 100259 (2023).

ArticlePubMedGoogle Scholar

Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

ArticleCASPubMedGoogle Scholar

Yaseen, Z. et al. Validation of an accurate automated multiplex immunofluorescence method for immuno-profiling melanoma. Front. Mol. Biosci. 9, 810858 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Massi, D. et al. The density and spatial tissue distribution of CD8+ and CD163+ immune cells predict response and outcome in melanoma patients receiving MAPK inhibitors. J. Immunother. Cancer 7, 308 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

ArticleCASPubMedPubMed CentralGoogle Scholar

Gajewski, T. F. The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor microenvironment. Semin. Oncol. 42, 663–671 (2015).

ArticlePubMedPubMed CentralGoogle Scholar

Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017). This review summarizes the steps in the cancer immunity cycle and highlights key targets for cancer immunotherapy.

ArticleCASPubMedGoogle Scholar

Indini, A. et al. Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Semin. Cancer Biol. 86, 477–490 (2022).

ArticleCASPubMedGoogle Scholar

Kittler, H., Pehamberger, H., Wolff, K. & Binder, M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 3, 159–165 (2002).

ArticleCASPubMedGoogle Scholar

Argenziano, G. et al. Dermoscopy improves accuracy of primary care physicians to triage lesions suggestive of skin cancer. J. Clin. Oncol. 24, 1877–1882 (2006).

ArticlePubMedGoogle Scholar

Serra-Garcia, L. et al. Dermoscopy training course improves podiatrists’ accuracy in diagnosing lesions suggestive of acral melanoma: a cross-sectional study. Australas. J. Dermatol. 63, e44–e48 (2022).

ArticlePubMedGoogle Scholar

Garbe, C. et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: diagnostics - update 2019. Eur. J. Cancer 126, 141–158 (2020).

ArticleCASPubMedGoogle Scholar

Dinnes, J. et al. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. Cochrane Database Syst. Rev. 12, CD011902 (2018).

PubMedGoogle Scholar

Longo, C. et al. Dermoscopy comparative approach for early diagnosis in familial melanoma: influence of MC1R genotype. J. Eur. Acad. Dermatol. Venereol. 35, 403–410 (2021).

ArticleCASPubMedGoogle Scholar

Wazaefi, Y. et al. Evidence of a limited intra-individual diversity of nevi: intuitive perception of dominant clusters is a crucial step in the analysis of nevi by dermatologists. J. Invest. Dermatol. 133, 2355–2361 (2013).

ArticleCASPubMedGoogle Scholar

Russo, T. et al. Indications for digital monitoring of patients with multiple nevi: recommendations from the International Dermoscopy Society. Dermatol. Pract. Concept. 12, e2022182 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Salerni, G. et al. Benefits of total body photography and digital dermatoscopy (“two-step method of digital follow-up”) in the early diagnosis of melanoma in patients at high risk for melanoma. J. Am. Acad. Dermatol. 67, e17–e27 (2012).

ArticlePubMedGoogle Scholar

Gasparini, G. et al. Usefulness of the ‘two-step method’ of digital follow-up for early-stage melanoma detection in high-risk French patients: a retrospective 4-year study. Br. J. Dermatol. 181, 415–416 (2019).

ArticleCASPubMedGoogle Scholar

Moloney, F. J. et al. Detection of primary melanoma in individuals at extreme high risk: a prospective 5-year follow-up study. JAMA Dermatol. 150, 819–827 (2014).

ArticlePubMedGoogle Scholar

Pezzini, C. et al. Reflectance confocal microscopy diagnostic accuracy for malignant melanoma in different clinical settings: systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 34, 2268–2279 (2020).

ArticleCASPubMedGoogle Scholar

Dinnes, J. et al. Reflectance confocal microscopy for diagnosing cutaneous melanoma in adults. Cochrane Database Syst. Rev. 12, CD013190 (2018).

PubMedGoogle Scholar

Alarcon, I. et al. Impact of in vivo reflectance confocal microscopy on the number needed to treat melanoma in doubtful lesions. Br. J. Dermatol. 170, 802–808 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

Pellacani, G. et al. Cost-benefit of reflectance confocal microscopy in the diagnostic performance of melanoma. J. Eur. Acad. Dermatol. Venereol. 30, 413–419 (2016).

ArticleCASPubMedGoogle Scholar

Pellacani, G. et al. Effect of reflectance confocal microscopy for suspect lesions on diagnostic accuracy in melanoma: a randomized clinical trial. JAMA Dermatol. 158, 754–761 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Barata, C. et al. A reinforcement learning model for AI-based decision support in skin cancer. Nat. Med. 29, 1941–1946 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Combalia, M. et al. Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge. Lancet Digit. Health 4, e330–e339 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Tschandl, P. et al. Human-computer collaboration for skin cancer recognition. Nat. Med. 26, 1229–1234 (2020).

ArticleCASPubMedGoogle Scholar

Brancaccio, G. et al. Artificial intelligence in skin cancer diagnosis: a reality check. J. Invest. Dermatol. 144, 492–499 (2024).

ArticleCASPubMedGoogle Scholar

Keung, E. Z. & Gershenwald, J. E. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert. Rev. Anticancer. Ther. 18, 775–784 (2018).

ArticleCASPubMedPubMed CentralGoogle Scholar

Torres-Cabala, C., Li-Ning-Tapia, E. & Hwu, W. J. Pathology-based biomarkers useful for clinical decisions in melanoma. Arch. Med. Res. 51, 827–838 (2020).

ArticleCASPubMedGoogle Scholar

Lezcano, C., Jungbluth, A. A. & Busam, K. J. Immunohistochemistry for PRAME in dermatopathology. Am. J. Dermatopathol. 45, 733–747 (2023).

ArticlePubMedPubMed CentralGoogle Scholar

Yeh, I. Melanocytic naevi, melanocytomas and emerging concepts. Pathology 55, 178–186 (2023).

ArticlePubMedGoogle Scholar

de la Fouchardiere, A. et al. ESP, EORTC, and EURACAN Expert Opinion: practical recommendations for the pathological diagnosis and clinical management of intermediate melanocytic tumors and rare related melanoma variants. Virchows Arch. 479, 3–11 (2021).

ArticlePubMedGoogle Scholar

Andea, A. A. Molecular testing in melanoma for the surgical pathologist. Pathology 55, 245–257 (2023).

ArticleCASPubMedGoogle Scholar

Whitman, E. D. et al. Integrating 31-gene expression profiling with clinicopathologic features to optimize cutaneous melanoma sentinel lymph node metastasis prediction. JCO Precis. Oncol. 5, PO.21.00162 (2021).

PubMedPubMed CentralGoogle Scholar

Yousaf, A. et al. Validation of CP-GEP (Merlin assay) for predicting sentinel lymph node metastasis in primary cutaneous melanoma patients: a U.S. cohort study. Int. J. Dermatol. 60, 851–856 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Amaral, T. M. S. et al. Clinical validation of a prognostic 11-gene expression profiling score in prospectively collected FFPE tissue of patients with AJCC v8 stage II cutaneous melanoma. Eur. J. Cancer 125, 38–45 (2020).

ArticleCASPubMedGoogle Scholar

Kott, J. et al. Sentinel lymph node risk prognostication in primary cutaneous melanoma through tissue-based profiling, potentially redefining the need for sentinel lymph node biopsy. Eur. J. Cancer 202, 113989 (2024).

ArticlePubMedGoogle Scholar

Katalinic, A. et al. Does skin cancer screening save lives?: an observational study comparing trends in melanoma mortality in regions with and without screening. Cancer 118, 5395–5402 (2012).

ArticlePubMedGoogle Scholar

Katalinic, A., Eisemann, N. & Waldmann, A. Skin cancer screening in Germany. documenting melanoma incidence and mortality from 2008 to 2013. Dtsch. Arztebl Int. 112, 629–634 (2015).

PubMedPubMed CentralGoogle Scholar

Schumann, L. et al. Association of early-stage incidence and mortality in malignant melanoma – a population-based ecological study. J. Dtsch. Dermatol. Ges. 21, 33–40 (2023).

PubMedGoogle Scholar

US Preventive Services Task Force. Screening for skin cancer: US Preventive Services Task Force recommendation statement. JAMA 329, 1290–1295 (2023).

ArticleGoogle Scholar

Argenziano, G. et al. Total body skin examination for skin cancer screening in patients with focused symptoms. J. Am. Acad. Dermatol. 66, 212–219 (2012).

ArticlePubMedGoogle Scholar

Puig, S. et al. Characterization of individuals at high risk of developing melanoma in Latin America: bases for genetic counseling in melanoma. Genet. Med. 18, 727–736 (2016).

ArticlePubMedGoogle Scholar

Taylor, N. J. et al. Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT. J. Am. Acad. Dermatol. 81, 386–394 (2019).

ArticleCASPubMedPubMed CentralGoogle Scholar

Smit, A. K. et al. Impact of personal genomic risk information on melanoma prevention behaviors and psychological outcomes: a randomized controlled trial. Genet. Med. 23, 2394–2403 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Tabbakh, T., Volkov, A., Wakefield, M. & Dobbinson, S. Implementation of the SunSmart program and population sun protection behaviour in Melbourne, Australia: results from cross-sectional summer surveys from 1987 to 2017. PLoS Med. 16, e1002932 (2019).

ArticlePubMedPubMed CentralGoogle Scholar

The Global Health Observatory. Ultraviolet (UV) Radiation. WHOwww.who.int/data/gho/data/themes/topics/topic-details/GHO/ultraviolet-(uv)-radiation (2024).

Krutmann, J., Morita, A. & Chung, J. H. Sun exposure: what molecular photodermatology tells us about its good and bad sides. J. Invest. Dermatol. 132, 976–984 (2012).

ArticleCASPubMedGoogle Scholar

Green, A. C., Williams, G. M., Logan, V. & Strutton, G. M. Reduced melanoma after regular sunscreen use: randomized trial follow-up. J. Clin. Oncol. 29, 257–263 (2011).

ArticleCASPubMedGoogle Scholar

Goldenhersh, M. A. & Koslowsky, M. Increased melanoma after regular sunscreen use? J. Clin. Oncol. 29, e557–e558 (2011).

ArticlePubMedGoogle Scholar

Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

ArticleCASPubMedGoogle Scholar

Kallioglu, M. A. et al. UV index-based model for predicting synthesis of (pre-)vitamin D3 in the Mediterranean basin. Sci. Rep. 14, 3541 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Feketea, G. M. et al. Vitamin D status in children in Greece and its relationship with sunscreen application. Children 8, 111 (2021).

ArticlePubMedPubMed CentralGoogle Scholar

Faurschou, A. et al. The relation between sunscreen layer thickness and vitamin D production after ultraviolet B exposure: a randomized clinical trial. Br. J. Dermatol. 167, 391–395 (2012).

ArticleCASPubMedGoogle Scholar

Marks, R. et al. The effect of regular sunscreen use on vitamin D levels in an Australian population. Results of a randomized controlled trial. Arch. Dermatol. 131, 415–421 (1995).

ArticleCASPubMedGoogle Scholar

Martin-Gorgojo, A., Gilaberte, Y. & Nagore, E. Vitamin D and skin cancer: an epidemiological, patient-centered update and review. Nutrients 13, 4292 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Lallas, A. et al. Second primary melanomas in a cohort of 977 melanoma patients within the first 5 years of monitoring. J. Am. Acad. Dermatol. 82, 398–406 (2020).

ArticlePubMedGoogle Scholar

Antunez-Lay, A. et al. Synchronous primary cutaneous melanomas: a descriptive study of their clinical features, histology, genetic background of the patients and clinical outcomes. J. Eur. Acad. Dermatol. Venereol. 36, 2364–2372 (2022).

ArticleCASPubMedGoogle Scholar

Aneja, S., Aneja, S. & Bordeaux, J. S. Association of increased dermatologist density with lower melanoma mortality. Arch. Dermatol. 148, 174–178 (2012).

ArticlePubMedGoogle Scholar

Korn, E. L. et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J. Clin. Oncol. 26, 527–534 (2008).

ArticlePubMedGoogle Scholar

Pavlick, A. C. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. J. Immunother. Cancer 11, e006947 (2023). This is the third version of the SITC cancer immunotherapy practice guidelines, which details the current standard of care and summarizes surgical, local-regional and systemic therapy recommendations, as well as guidelines for surveillance in low, intermediate, and high-risk settings.

ArticlePubMedPubMed CentralGoogle Scholar

Luke, J. J. et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. Lancet 399, 1718–1729 (2022).

ArticleCASPubMedGoogle Scholar

Kirkwood, J. M. et al. Adjuvant nivolumab in resected stage IIB/C melanoma: primary results from the randomized, phase 3 CheckMate 76K trial. Nat. Med. 29, 2835–2843 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Eggermont, A. M. M. et al. Longer follow-up confirms recurrence-free survival benefit of adjuvant pembrolizumab in high-risk stage III melanoma: updated results from the EORTC 1325-MG/KEYNOTE-054 trial. J. Clin. Oncol. 38, 3925–3936 (2020).

ArticleCASPubMedPubMed CentralGoogle Scholar

Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

ArticleCASPubMedGoogle Scholar

Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

ArticleCASPubMedGoogle Scholar

Swetter, S. M. et al. NCCN guidelines(R) insights: melanoma: cutaneous, version 2.2024. J. Natl Compr. Canc Netw. 22, 290–298 (2024).

ArticleCASPubMedGoogle Scholar

Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

ArticleCASPubMedGoogle Scholar

Henderson, M. A. et al. Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial. Lancet Oncol. 16, 1049–1060 (2015).

ArticlePubMedGoogle Scholar

Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

ArticleCASPubMedPubMed CentralGoogle Scholar

Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

ArticleCASPubMedGoogle Scholar

Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

ArticleCASPubMedGoogle Scholar

Wolchok, J. D. et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J. Clin. Oncol. 40, 127–137 (2022).

ArticleCASPubMedGoogle Scholar

Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

ArticleCASPubMedPubMed CentralGoogle Scholar

Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021).

ArticleCASPubMedGoogle Scholar

Chesney, J. et al. Efficacy and safety of lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies: pooled analysis of consecutive cohorts of the C-144-01 study. J. Immunother. Cancer 10, e005755 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

ArticleCASPubMedGoogle Scholar

Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

ArticleCASPubMedGoogle Scholar

Sullivan, R. J. & Flaherty, K. MAP kinase signaling and inhibition in melanoma. Oncogene 32, 2373–2379 (2013).

ArticleCASPubMedGoogle Scholar

Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

ArticleCASPubMedPubMed CentralGoogle Scholar

Larkin, J. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371, 1867–1876 (2014).

ArticlePubMedGoogle Scholar

Grob, J. J. et al. Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): results of a phase 3, open-label, randomised trial. Lancet Oncol. 16, 1389–1398 (2015).

ArticleCASPubMedGoogle Scholar

Dummer, R. et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 19, 603–615 (2018).

ArticleCASPubMedGoogle Scholar

Tawbi, H. A. et al. Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): final results of an open-label, multicentre, phase 2 study. Lancet Oncol. 22, 1692–1704 (2021).

ArticleCASPubMedPubMed CentralGoogle Scholar

Long, G. V. et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 19, 672–681 (2018).

ArticleCASPubMedGoogle Scholar

Johnson, D. B. et al. Sequencing treatment in BRAFV600 mutant melanoma: anti-PD-1 before and after BRAF inhibition. J. Immunother. 40, 31–35 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Atkins, M. B. et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: the DREAMseq Trial–ECOG-ACRIN EA6134. J. Clin. Oncol. 41, 186–197 (2023). The DREAM-SEQ trial is a landmark study that demonstrated superiority of frontline ICI combination versus combination BRAF–MEK inhibition as frontline therapy for patients with BRAFV600E/K-mutant, advanced melanoma.

ArticleCASPubMedGoogle Scholar

Ascierto, P. A. et al. Sequencing of ipilimumab plus nivolumab and encorafenib plus binimetinib for untreated BRAF-mutated metastatic melanoma (SECOMBIT): a randomized, three-arm, open-label phase II trial. J. Clin. Oncol. 41, 212–221 (2023).

ArticleCASPubMedGoogle Scholar

Davies, M. A. et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 18, 863–873 (2017).

ArticleCASPubMedPubMed CentralGoogle Scholar

Wolchok, J. D. et al. Final, 10-year outcomes with nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 392, 11–22 (2025). This paper summarizes the 10-year follow-up results of the Checkmate 067 trial with randomized patients with previously untreated, advanced melanoma who received single-agent anti-CTLA-4, single-agent anti-PD1 or the combination of anti-CTLA-4 and anti-PD1, demonstrating the superiority of single-agent anti-PD1 and combination therapy versus single-agent anti-CTLA4.

ArticleCASPubMedGoogle Scholar

Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

ArticleCASPubMedGoogle Scholar

Eggermont, A. M. M., Robert, C. & Suciu, S. Adjuvant pembrolizumab in resected stage III melanoma. N. Engl. J. Med. 379, 593–595 (2018).

ArticlePubMedGoogle Scholar

Dummer, R. et al. Five-year analysis of adjuvant dabrafenib plus trametinib in stage III melanoma. N. Engl. J. Med. 383, 1139–1148 (2020).

ArticleCASPubMedGoogle Scholar

Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

ArticleCASPubMedGoogle Scholar

Rozeman, E. A. et al. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 20, 948–960 (2019).

ArticleCASPubMedGoogle Scholar

Amaria, R. N. et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature 611, 155–160 (2022).

ArticleCASPubMedPubMed CentralGoogle Scholar

Reijers, I. L. M. et al. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial. Nat. Med. 28, 1178–1188 (2022).

ArticleCASPubMedGoogle Scholar

Patel, S. P. et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023). This randomized trial compared perioperative therapy, including neoadjuvant and adjuvant components, with surgery followed by adjuvant therapy in patients with clinical stage III melanoma.

ArticleCASPubMedPubMed CentralGoogle Scholar

Blank, C. U. et al. Neoadjuvant nivolumab and ipilimumab in resectable stage III melanoma. N. Engl. J. Med. 391, 1696–1708 (2024). Similar to SWOG 1801, this trial compared neoadjuvant therapy with surgery and adjuvant therapy in patients with clinical stage 3 disease and demonstrated superiority of preoperative systemic therapy with single-agent anti-PD1.

ArticleCASPubMedGoogle Scholar

Reijers, I. L. M. et al. Impact of personalized response-directed surgery and adjuvant therapy on survival after neoadjuvant immunotherapy in stage III melanoma: comparison of 3-year data from PRADO and OpACIN-neo. Eur. J. Cancer 214, 115141 (2025).

ArticleCASPubMedGoogle Scholar

Cormier, J. N., Davidson, L., Xing, Y., Webster, K. & Cella, D. Measuring quality of life in patients with melanoma: development of the FACT-melanoma subscale. J. Support. Oncol. 3, 139–145 (2005).

PubMedGoogle Scholar

Hansen, A. R. et al. Development of the functional assessment of cancer therapy-immune checkpoint modulator (FACT-ICM): a toxicity subscale to measure quality of life in patients with cancer who are treated with ICMs. Cancer 126, 1550–1558 (2020).

ArticlePubMedGoogle Scholar

Egeler, M. D. et al. Understanding quality of life issues in patients with advanced melanoma: phase 1 and 2 in the development of the EORTC advanced melanoma module. Eur. J. Cancer 207, 114176 (2024).

ArticleCASPubMedGoogle Scholar

Edelen, M. O. et al. Development of an ultra-short measure of eight domains of health-related quality of life for research and clinical care: the patient-reported outcomes measurement information system(R) PROMIS(R)-16 profile. Qual. Life Res. 34, 3–15 (2025).

ArticlePubMedGoogle Scholar

Petersen, M. A. et al. International validation of the EORTC CAT Core: a new adaptive instrument for measuring core quality of life domains in cancer. Qual. Life Res. 29, 1405–1417 (2020).

ArticlePubMedGoogle Scholar

Lai-Kwon, J. et al. Impact of immune checkpoint inhibitors and targeted therapy on health-related quality of life of people with stage III and IV melanoma: a mixed-methods systematic review. Eur. J. Cancer 184, 83–105 (2023).

ArticleCASPubMedGoogle Scholar

Chen, C., Wang, Z. & Qin, Y. R. Health-related quality of life in stage III-IV melanoma treated with targeted therapy or immunotherapy: a systematic review on the adequacy of reporting and clinical issues in phase III randomized controlled trials. Cancer Med. 12, 2262–2280 (2023).

ArticleCASPubMedGoogle Scholar

Fraterman, I. et al. Association between pretreatment emotional distress and neoadjuvant immune checkpoint blockade response in melanoma. Nat. Med. 29, 3090–3099 (2023).

ArticleCASPubMedGoogle Scholar

Bi, Z. et al. Negative correlations of psychological distress with quality of life and immunotherapy efficacy in patients with advanced NSCLC. Am. J. Cancer Res. 12, 805–815 (2022).

CASPubMedPubMed CentralGoogle Scholar

Zeng, Y. et al. Association between pretreatment emotional distress and immune checkpoint inhibitor response in non-small-cell lung cancer. Nat. Med. 30, 1680–1688 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Globig, A. M. et al. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622, 383–392 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kungwengwe, G. et al. Prevalence and odds of anxiety and depression in cutaneous malignant melanoma: a proportional meta-analysis and regression. Br. J. Dermatol. https://doi.org/10.1093/bjd/ljae011 (2024).

Aggarwal, C. et al. Dual checkpoint targeting of B7-H3 and PD-1 with enoblituzumab and pembrolizumab in advanced solid tumors: interim results from a multicenter phase I/II trial. J. Immunother. Cancer 10, e004424 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

ArticleCASPubMedGoogle Scholar

Giugliano, F. et al. First line treatment of BRAF mutated advanced melanoma: does one size fit all? Cancer Treat. Rev. 99, 102253 (2021).

ArticleCASPubMedGoogle Scholar

Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

ArticlePubMedGoogle Scholar

Kim, K. H. et al. Exploring molecular genetic alterations and RAF fusions in melanoma: a belvarafenib expanded access program in patients with RAS/RAF-mutant melanoma. Oncologist 29, e811–e821 (2024).

ArticlePubMedPubMed CentralGoogle Scholar

Dummer, R. et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 18, 435–445 (2017).

ArticleCASPubMedGoogle Scholar

Benton, S. et al. Risk factors for the development of Spitz neoplasms. Pediatr. Dermatol. 39, 220–225 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Fortes, C. et al. Differences in individual and environmental factors between cutaneous melanoma and atypical Spitz tumour in children and adolescents. Eur. J. Pediatr. 181, 263–269 (2022).

ArticlePubMedGoogle Scholar

Shitara, D. et al. Nevus-associated melanomas: clinicopathologic features. Am. J. Clin. Pathol. 142, 485–491 (2014).

ArticlePubMedGoogle Scholar

Guitera, P. et al. The steadily growing problem of lentigo maligna and lentigo maligna melanoma in Australia: population-based data on diagnosis and management. Australas. J. Dermatol. 60, 118–125 (2019).

ArticlePubMedGoogle Scholar

Swetter, S. M., Boldrick, J. C., Jung, S. Y., Egbert, B. M. & Harvell, J. D. Increasing incidence of lentigo maligna melanoma subtypes: northern California and national trends 1990-2000. J. Invest. Dermatol. 125, 685–691 (2005).

ArticleCASPubMedGoogle Scholar

Matas-Nadal, C. et al. Increasing incidence of lentigo maligna and lentigo maligna melanoma in Catalonia. Int. J. Dermatol. 58, 577–581 (2019).

ArticlePubMedGoogle Scholar

Leachman, S. A. et al. Selection criteria for genetic assessment of patients with familial melanoma. J. Am. Acad. Dermatol. 61, 677.e1–677.e14 (2009).

ArticlePubMedGoogle Scholar

Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

ArticleCASPubMedGoogle Scholar

Haanen, J. et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 1217–1238 (2022).

ArticleCASPubMedGoogle Scholar

Garutti, M. et al. BRAF and MEK inhibitors and their toxicities: a meta-analysis. Cancers 15, 141 (2022).

ArticlePubMedPubMed CentralGoogle Scholar

Klobuch, S., Seijkens, T. T. P., Schumacher, T. N. & Haanen, J. Tumour-infiltrating lymphocyte therapy for patients with advanced-stage melanoma. Nat. Rev. Clin. Oncol. 21, 173–184 (2024).

ArticleCASPubMedGoogle Scholar

Gershenwald, J. E. & Scolyer, R. A. Melanoma staging: American Joint Committee on Cancer (AJCC) 8th edition and beyond. Ann. Surg. Oncol. 25, 2105–2110 (2018).

ArticlePubMedGoogle Scholar

Kuras, M. Exploring the complex and multifaceted interplay between melanoma cells and the tumor microenvironment. Int. J. Mol. Sci. 24, 14403 (2023).

ArticleCASPubMedPubMed CentralGoogle Scholar

Kittler, H. et al. Standardization of terminology in dermoscopy/dermatoscopy: results of the third consensus conference of the International Society of Dermoscopy. J. Am. Acad. Dermatol. 74, 1093–1106 (2016).

ArticlePubMedPubMed CentralGoogle Scholar

Download references

Acknowledgements

The authors thank C. Carrera, K. Liopiris, J. Malvehy and P. Zaballos (all from Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain) for providing the images in Figs. 5, 6 and 7 for this article. The authors extend their sincere gratitude to the patients who provided consent to publish their images in this Primer. A.T. acknowledges the support of an Emmy Noether Award from the German Research Foundation (DFG, 467788900) and the Ministry of Culture and Science of the State of North Rhine-Westphalia (NRW-Nachwuchsgruppenprogramm). A.T. acknowledges the support of an ERC starting grant (METATARGET, 101078355). A.T. holds the Peter Hans Hofschneider endowed Professorship of Molecular Medicine from the Stiftung Experimentelle Biomedizin.

Author information

Authors and Affiliations

Department of Dermatology, University Hospital Essen & German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany

Alpaslan Tasdogan & Dirk Schadendorf

National Center for Tumour diseases (NCT-West), Campus Essen & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany

Alpaslan Tasdogan & Dirk Schadendorf

Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA

Ryan J. Sullivan

Institute for Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany

Alexander Katalinic

Université Paris Cite, AP-HP Dermato-oncology and CIC, Cancer institute APHP.nord Paris cité, INSERM U976, Saint Louis Hospital, Paris, France

Celeste Lebbe

Melanoma Advisory Board South Africa, Cape Town, South Africa

Dagmar Whitaker

Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain

Susana Puig

8CIBERER, Instituto de Salud Carlos III, Barcelona, Spain

Susana Puig

Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands

Lonneke V. van de Poll-Franse

Department of Medical and Clinical Psychology, CoRPS - Center of Research on Psychology in Somatic Diseases, Tilburg University, Tilburg, Netherlands

Lonneke V. van de Poll-Franse

Section of Pathology, Department of Health Sciences, University of Florence, Florence, Italy

Daniela Massi

Department of Molecular Pathobiology, New York University - College of Dentistry, New York, NY, USA

Daniela Massi

Authors

Alpaslan Tasdogan

View author publications

You can also search for this author inPubMedGoogle Scholar

2. Ryan J. Sullivan

View author publications

You can also search for this author inPubMedGoogle Scholar

3. Alexander Katalinic

View author publications

You can also search for this author inPubMedGoogle Scholar

4. Celeste Lebbe

View author publications

You can also search for this author inPubMedGoogle Scholar

5. Dagmar Whitaker

View author publications

You can also search for this author inPubMedGoogle Scholar

6. Susana Puig

View author publications

You can also search for this author inPubMedGoogle Scholar

7. Lonneke V. van de Poll-Franse

View author publications

You can also search for this author inPubMedGoogle Scholar

8. Daniela Massi

View author publications

You can also search for this author inPubMedGoogle Scholar

9. Dirk Schadendorf

View author publications

You can also search for this author inPubMedGoogle Scholar

Contributions

Introduction (A.T. and D.S.); Epidemiology (A.K.); Mechanisms/pathophysiology (R.J.S. and D.M.); Diagnosis, screening and prevention (S.P. and D.M.); Management (R.J.S., C.L. and D.W.); Quality of life (L.V.v.d.P.-F.); Outlook (A.T. and D.S.); overview of the Primer (A.T.).

Corresponding authors

Correspondence to Alpaslan Tasdogan or Dirk Schadendorf.

Ethics declarations

Competing interests

A.T. declares speakers’ honoraria from Merck Sharp & Dohme. R.J.S. declares personal fees from Marengo, Merck, Novartis, Pfizer and Replimune for consulting/advisory board activity, and research grant support to his institution from Merck. C.L. declares conflicts of interest with BMS, Pierre Fabre, Sanofi, Novartis, MSD, Amgen, Merck Serono, Roche, Inflax and Pfizer. S.P. declares research grants from Almirall, Pfizer, Regeneron, Sanofi, La Roche Posay Philogen, ISDIN and International School of Derma; consulting fees from Sanofi, Regeneron, ISDIN, L’Oreal, La Roche Posay and International School of Derma; personal fees from Sanofi, Sunpharma, Cantabria, Eucerin, ISDIN, L’Oreal, La Roche Posay, Almirall, Avene and Pierre Fabre; and support for attending meetings and/or travel from Almirall, Cantabria and ISDIN. D.M. declares personal fees from Novartis, Sun Pharma, Bayer HealthCare Pharmaceuticals Inc., Pierre-Fabre Oncology, Sanofi Genzyme, MSD Italia S.r.l., Roche and Skyline Dx B.V, and Sakura; and a grant from Regeneron. D.S. reports personal fees and non-financial support from Roche/Genentech, Merck Serono, Sanofi/Regeneron, SunPharma, Neracare, Replimune, Helsinn, OncoSec and InFlaRx; grants, personal fees and non-financial support from Amgen and Novartis; grants, personal fees, non-financial and other support from BMS; and personal fees from Merck Sharp & Dohme, Immunocore, Incyte, 4SC, Pierre Fabre, Array BioPharma, Pfizer, Philogen, Regeneron, Nektar and Sandoz; outside the submitted work. A.K., D.W. and L.V.v.d.P.-F. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks R. Dummer, H. Gogas, E. Novis, M. Postow, R. Saw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Figs. 5, 6 and 7 and Supplementary Figs. 3 and 4.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasdogan, A., Sullivan, R.J., Katalinic, A. et al. Cutaneous melanoma. Nat Rev Dis Primers 11, 23 (2025). https://doi.org/10.1038/s41572-025-00603-8

Download citation

Accepted:25 February 2025

Published:03 April 2025

DOI:https://doi.org/10.1038/s41572-025-00603-8

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page