Abstract
Insects are crucial for the functioning of ecosystems and might be facing declines globally, although data are biased away from the tropics where insect diversity and abundance are highest. In this Review, we assess the current status of insect populations in the tropics and discuss the prevailing threats to tropical insect biodiversity. Burgeoning human populations, increasing urbanization and land-use changes are leading to habitat loss and fragmentation, as well as increased pollution, including both light and pesticides. Insects on tropical islands are particularly sensitive to invasive species, which have already led to the extinction of multiple unique endemic species. Climate change further threatens insect populations across the tropics and might be disrupting crucial weather cycles such as El Niño and La Niña, which are important drivers of phenology and synchrony at these latitudes. Tropical insect declines might alter fundamental ecosystem processes such as nutrient cycling, carbon sequestration and herbivory. Disruption of food webs could lead to increased outbreaks of pests and of insect-vectored diseases in humans and livestock, affecting human health and reducing food security. Methodological advances — including artificial intelligence and computer vision, remote sensing and meta-barcoding — are facilitating taxonomy, speeding up identification of diverse samples and improving the monitoring of tropical insect biodiversity to guide future conservation efforts.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Learn more
Buy this article
Purchase on SpringerLink
Instant access to full article PDF
Buy now
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Geographic distribution of publicly accessible datasets for tracking tropical insect communities through time.
Fig. 2: The global distribution of threats to tropical insects.
Fig. 3: Ecological effects of declining insect diversity and abundance.
References
Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
ArticleGoogle Scholar
Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).
ArticleCASGoogle Scholar
Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land‐use change influence broad‐scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).
ArticleGoogle Scholar
Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).
ArticleCASGoogle Scholar
Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Env. 20, 10–15 (2022).
ArticleGoogle Scholar
Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
ArticleCASGoogle Scholar
Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).
ArticleCASGoogle Scholar
Eggleton, P. The state of the world’s insects. Annu. Rev. Environ. Resour. 45, 61–82 (2020).
ArticleGoogle Scholar
Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).
ArticleGoogle Scholar
Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).
ArticleGoogle Scholar
McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).
ArticleGoogle Scholar
Li, X. & Wiens, J. J. Estimating global biodiversity: the role of cryptic insect species. Syst. Biol. 72, 391–403 (2023).
ArticleGoogle Scholar
van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).
ArticleGoogle Scholar
Lindenmayer, D. B. et al. Value of long‐term ecological studies. Austral Ecol. 37, 745–757 (2012).
ArticleGoogle Scholar
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).
ArticleCASGoogle Scholar
Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl Acad. Sci. USA 118, e2002548117 (2021).
ArticleCASGoogle Scholar
Bonebrake, T. C. & Deutsch, C. A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 93, 449–455 (2012).
ArticleGoogle Scholar
Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).
ArticleCASGoogle Scholar
Nash, L. N. et al. Latitudinal patterns of aquatic insect emergence driven by climate. Glob. Ecol. Biogeogr. 32, 1323–1335 (2023).
ArticleGoogle Scholar
Dewenter, B. S. et al. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis. Ecol. Evol. 14, e10937 (2024).
ArticleGoogle Scholar
Colwell, R. K. & Feeley, K. J. Still little evidence of poleward range shifts in the tropics, but lowland biotic attrition may be underway. Biotropicahttps://doi.org/10.1111/btp.13358 (2024).
Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).
ArticleGoogle Scholar
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).
ArticleCASGoogle Scholar
Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).
ArticleGoogle Scholar
Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
ArticleGoogle Scholar
Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).
ArticleCASGoogle Scholar
Crespo-Pérez, V., Kazakou, E., Roubik, D. W. & Cárdenas, R. E. The importance of insects on land and in water: a tropical view. Curr. Opin. Insect Sci. 40, 31–38 (2020).
ArticleGoogle Scholar
Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).
ArticleCASGoogle Scholar
Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L. & Salminen, J.-P. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338, 113–116 (2012).
ArticleCASGoogle Scholar
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
ArticleCASGoogle Scholar
Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).
ArticleGoogle Scholar
Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
ArticleGoogle Scholar
Wright, S. J. Tropical forests in a changing environment. Trends Ecol. Evol. 20, 553–560 (2005).
ArticleGoogle Scholar
Nunes, C. A. et al. Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proc. Natl Acad. Sci. USA 119, e2202310119 (2022).
ArticleCASGoogle Scholar
Olarewaju, J. A., Akinlolu, S. A., Olalekan, K. A. & Abiodun, M. A. in Vegetation Dynamics, Changing Ecosystems and Human Responsibility (eds Hufnagel, L. & El-Esawi, M. A.) Ch. 9 (InTechOpen, 2022).
Faria, D. et al. The breakdown of ecosystem functionality driven by deforestation in a global biodiversity hotspot. Biol. Conserv. 283, 110126 (2023).
ArticleGoogle Scholar
Bos, M. M. et al. in Stability of Tropical Rainforest Margins: Linking Ecological, Economic and Social Constraints of Land Use and Conservation (eds. Tscharntke, T. et al.) 277–294 (Springer, 2007).
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).
ArticleCASGoogle Scholar
Lamarre, G. P. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62, 295–330 (Elsevier, 2020).
Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).
ArticleGoogle Scholar
Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).
ArticleCASGoogle Scholar
Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diversity 13, 103–114 (2020).
ArticleGoogle Scholar
Corlett, R. T. & Primack, R. B. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 21, 104–110 (2006).
ArticleGoogle Scholar
Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).
ArticleCASGoogle Scholar
Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Change Biol. 15, 48–62 (2009).
ArticleGoogle Scholar
Silveira, M. V. F., Silva-Junior, C. H. L., Anderson, L. O. & Aragão, L. E. O. C. Amazon fires in the 21st century: the year of 2020 in evidence. Glob. Ecol. Biogeogr. 31, 2026–2040 (2022).
ArticleGoogle Scholar
Carvalho, R. L. et al. Pervasive gaps in Amazonian ecological research. Curr. Biol. 33, 3495–3504.e3494 (2023).
ArticleCASGoogle Scholar
Dornelas, M. et al. Quantifying temporal change in biodiversity: challenges and opportunities. Proc. R. Soc. B 280, 20121931 (2013).
ArticleGoogle Scholar
Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Env. 16, 222–230 (2018).
ArticleGoogle Scholar
Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nat. Ecol. Evol. 3, 1645–1649 (2019).
ArticleGoogle Scholar
Chechina, M. & Hamann, A. Climatic drivers of dipterocarp mass-flowering in south-east Asia. J. Trop. Ecol. 35, 108–117 (2019).
ArticleGoogle Scholar
Hosaka, T. et al. Abundance of insect seed predators and intensity of seed predation on Shorea (Dipterocarpaceae) in two consecutive masting events in peninsular Malaysia. J. Trop. Ecol. 27, 651–655 (2011).
ArticleGoogle Scholar
Kishimoto-Yamada, K. et al. Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a Bornean rainforest. Bull. Entomol. Res. 99, 217–227 (2009).
ArticleCASGoogle Scholar
Adamescu, G. S. et al. Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica 50, 418–430 (2018).
ArticleGoogle Scholar
Stork, N. E., Boyle, M. J., Wardhaugh, C. & Beaver, R. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Diversity 17, 1156–1166 (2024).
ArticleGoogle Scholar
Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).
ArticleCASGoogle Scholar
Brydegaard, M. et al. Towards global insect biomonitoring with frugal methods. Phil. Trans. R. Soc. B 379, 20230103 (2024).
ArticleCASGoogle Scholar
Bierman, A. & Lloyd, M. in Routledge Handbook of Insect Conservation (eds Pryke, J. S. et al.) 487–500 (Routledge, 2024).
Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).
ArticleGoogle Scholar
Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).
ArticleCASGoogle Scholar
França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Phil. Trans. R. Soc. B 375, 20190116 (2020).
ArticleGoogle Scholar
Ismaeel, A. et al. Patterns of tropical forest understory temperatures. Nat. Commun. 15, 549 (2024).
ArticleCASGoogle Scholar
Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).
ArticleGoogle Scholar
Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).
ArticleGoogle Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
ArticleCASGoogle Scholar
Thomas, C., Jones, T. H. & Hartley, S. E. ‘‘Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).
ArticleGoogle Scholar
Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70, 80–89 (2019).
ArticleGoogle Scholar
Dudgeon, D., Ng, L. C. Y. & Tsang, T. P. N. Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming. Glob. Change Biol. 26, 6399–6412 (2020).
ArticleGoogle Scholar
Lamarre, G. P. A. et al. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biol. Lett. 18, 20210519 (2022).
ArticleGoogle Scholar
Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
ArticleCASGoogle Scholar
Sundar, S., Silva, D. P., de Oliveira Roque, F., Simião-Ferreira, J. & Heino, J. Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot. J. Insect Conserv. 25, 229–241 (2021).
ArticleGoogle Scholar
Abarca, M. & Spahn, R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67–74 (2021).
ArticleGoogle Scholar
Ma, G., Ma, C.-S., Lann, C. L. & van Baaren, J. in Effects of Climate Change on Insects: Physiological, Evolutionary, and Ecological Responses (eds González-Tokman, D. & Dáttilo, W.) Ch. 6 (Oxford Univ. Press, 2024).
Cornelissen, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163 (2011).
ArticleCASGoogle Scholar
Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).
ArticleGoogle Scholar
Boyle, M. J. et al. Localised climate change defines ant communities in human‐modified tropical landscapes. Funct. Ecol. 35, 1094–1108 (2021).
ArticleCASGoogle Scholar
Mirtl, M. et al. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci. Total. Env. 626, 1439–1462 (2018).
ArticleCASGoogle Scholar
Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Glob. Change Biol. 24, 5243–5258 (2018).
ArticleGoogle Scholar
Xing, S. et al. Ecological patterns and processes in the vertical dimension of terrestrial ecosystems. J. Anim. Ecol. 92, 538–551 (2023).
ArticleGoogle Scholar
Bujan, J. & Yanoviak, S. P. Behavioral response to heat stress of twig-nesting canopy ants. Oecologia 198, 947–955 (2022).
ArticleGoogle Scholar
Ewers, R. M. et al. Thresholds for adding degraded tropical forest to the conservation estate. Nature 631, 808–813 (2024).
ArticleCASGoogle Scholar
Intergovernmental Panel on Climate Change (IPCC). AR6 Synthesis Report: Climate Change 2023. Contribution of Working Group I to the Six Assessment Report of the Intergovernmental Panel on Climate Change. IPCChttps://www.ipcc.ch/report/sixth-assessment-report-cycle/ (2023).
Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Change Biol. 26, 6685–6701 (2020).
ArticleGoogle Scholar
Newell, F. L., Ausprey, I. J. & Robinson, S. K. Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. Glob. Change Biol. 29, 308–323 (2023).
ArticleCASGoogle Scholar
Tng, D. Y. P. et al. Drought reduces the growth and health of tropical rainforest understory plants. For. Ecol. Manage 511, 120128 (2022).
ArticleGoogle Scholar
McCluney, K. E. Implications of animal water balance for terrestrial food webs. Curr. Opin. Insect Sci. 23, 13–21 (2017).
ArticleGoogle Scholar
Chaves, L. F., Morrison, A. C., Kitron, U. D. & Scott, T. W. Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. Glob. Change Biol. 18, 457–468 (2012).
ArticleGoogle Scholar
Van Bael, S. A. et al. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20, 625–633 (2004).
ArticleGoogle Scholar
Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).
ArticleGoogle Scholar
Shivoga, W. A. The influence of hydrology on the structure of invertebrate communities in two streams flowing into Lake Nakuru, Kenya. Hydrobiologia 458, 121–130 (2001).
ArticleGoogle Scholar
Walsh, R. P. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12, 385–407 (1996).
ArticleGoogle Scholar
Walsh, R. & Newbery, D. The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Phil. Trans. R. Soc. Lond. B 354, 1869–1883 (1999).
ArticleCASGoogle Scholar
Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).
ArticleCASGoogle Scholar
Sakai, S. General flowering in lowland mixed dipterocarp forests of south-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).
ArticleGoogle Scholar
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).
ArticleGoogle Scholar
Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).
ArticleGoogle Scholar
Peng, Q., Xie, S.-P. & Deser, C. Collapsed upwelling projected to weaken ENSO under sustained warming beyond the twenty-first century. Nat. Clim. Change 14, 815–822 (2024).
ArticleGoogle Scholar
Didham, R. K., Ghazoul, J., Stork, N. E. & Davis, A. J. Insects in fragmented forests: a functional approach. Trends Ecol. Evol. 11, 255–260 (1996).
ArticleCASGoogle Scholar
França, F. M. et al. Selective logging intensity and time since logging drive tropical bird and dung beetle diversity: a case study from Amazonia. Env. Conserv. 51, 112–121 (2024).
ArticleGoogle Scholar
Stork, N. E. et al. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conserv. Biol. 31, 924–933 (2017).
ArticleCASGoogle Scholar
Hamer, K. et al. Ecology of butterflies in natural and selectively logged forests of northern Borneo: the importance of habitat heterogeneity. J. Appl. Ecol. 40, 150–162 (2003).
ArticleGoogle Scholar
Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).
ArticleGoogle Scholar
Lewis, O. T. & Basset, Y. in Insect Conservation Biology (eds Stewart, A. J. A. et al.) 34–56 (Royal Entomological Society of London, 2007).
Solar, R. Rd. C. et al. How pervasive is biotic homogenization in human‐modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).
ArticleGoogle Scholar
Faria, A. P. J., Paiva, C. K. S., Calvão, L. B., Cruz, G. M. & Juen, L. Response of aquatic insects to an environmental gradient in Amazonian streams. Env. Monit. Assess. 193, 763 (2021).
ArticleGoogle Scholar
Brasil, L. S., de Lima, E. L., Spigoloni, Z. A., Ribeiro-Brasil, D. R. G. & Juen, L. The habitat integrity index and aquatic insect communities in tropical streams: a meta-analysis. Ecol. Indic. 116, 106495 (2020).
ArticleGoogle Scholar
Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).
ArticleGoogle Scholar
Amaral, P. H. M. D., Silveira, L. S. D., Rosa, B. F. J. V., Oliveira, V. C. D. & Alves, R. D. G. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 15, 60 (2015).
ArticleGoogle Scholar
de Paiva, C. K. S., de Faria, A. P. J., Calvao, L. B. & Juen, L. Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon. Env. Monit. Assess. 189, 393 (2017).
ArticleGoogle Scholar
Oliveira-Junior, J. & Juen, L. The Zygoptera/Anisoptera ratio (Insecta: Odonata): a new tool for habitat alterations assessment in Amazonian streams. Neotrop. Entomol. 48, 552–560 (2019).
ArticleCASGoogle Scholar
Dias-Silva, K., Brasil, L. S., Veloso, G. K. O., Cabette, H. S. R. & Juen, L. Land use change causes environmental homogeneity and low beta-diversity in Heteroptera of streams. Int. J. Limnol. 56, 9 (2020).
ArticleGoogle Scholar
Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).
ArticleCASGoogle Scholar
Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845 (2000).
ArticleCASGoogle Scholar
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
ArticleCASGoogle Scholar
Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545 (2008).
ArticleGoogle Scholar
Wilker, I. et al. Land-use change in the Amazon decreases ant diversity but increases ant-mediated predation. Insect Conserv. Diversity 16, 379–392 (2023).
ArticleGoogle Scholar
Perry, J. et al. How natural forest conversion affects insect biodiversity in the Peruvian Amazon: can agroforestry help? Forests 7, 82 (2016).
ArticleGoogle Scholar
Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–695 (2007).
ArticleCASGoogle Scholar
Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conserv. 177, 12–24 (2014).
ArticleGoogle Scholar
Stoll, E., Roopsind, A., Maharaj, G., Velazco, S. & Caughlin, T. T. Detecting gold mining impacts on insect biodiversity in a tropical mining frontier with SmallSat imagery. Remote. Sens. Ecol. Conserv. 8, 379–390 (2022).
ArticleGoogle Scholar
Kyerematen, R., Adu-Acheampong, S., Acquah-Lamptey, D. & Anderson, R. S. Using Orthoptera and Hymenoptera indicator groups as evidence of degradation in a mining concession (Tarkwa gold mine) in Ghana. Int. J. Trop. Insect Sci. 40, 221–224 (2020).
ArticleGoogle Scholar
Monge-Salazar, M. J. The effect of artisanal gold mining on aquatic insect communities: a case study in Costa Rica. Aquat. Insects 42, 160–178 (2021).
ArticleGoogle Scholar
Enríquez Espinosa, A. C. et al. Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon. J. Insect Conserv. 24, 1061–1072 (2020).
ArticleGoogle Scholar
Rivera-Pérez, J. M. et al. Effect of mining on the EPT (Ephemeroptera, Plecoptera and Trichoptera) assemblage of Amazonian streams based on their environmental specificity. Hydrobiologia 850, 645–664 (2023).
ArticleGoogle Scholar
Dedieu, N., Rhone, M., Vigouroux, R. & Céréghino, R. Assessing the impact of gold mining in headwater streams of eastern Amazonia using Ephemeroptera assemblages and biological traits. Ecol. Indic. 52, 332–340 (2015).
ArticleGoogle Scholar
Sarkar, S., Gil, J. D. B., Keeley, J. & Jansen, K. The use of pesticides in developing countries and their impact on health and the right to food. European Unionhttps://op.europa.eu/en/publication-detail/-/publication/652ce244-6b53-11eb-aeb5-01aa75ed71a1/language-en (2021).
Weiss, F. T., Ruepert, C., Echeverría-Sáenz, S., Eggen, R. I. L. & Stamm, C. Agricultural pesticides pose a continuous ecotoxicological risk to aquatic organisms in a tropical horticulture catchment. Environ. Adv. 11, 100339 (2023).
ArticleCASGoogle Scholar
Pelinson, R. M., Valente, B. R. S., Shimabukuro, E. M. & Schiesari, L. Impacts of agrochemical intensification and spatial isolation on the assembly and reassembly of temporary pond metacommunities. J. Appl. Ecol. 60, 2235–2250 (2023).
ArticleGoogle Scholar
Rodríguez-Rodríguez, C. E. et al. Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides. Env. Pollut. 284, 117498 (2021).
ArticleGoogle Scholar
Cabrera, M. et al. Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere 337, 139286 (2023).
ArticleCASGoogle Scholar
Rico, A. et al. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere 291, 132821 (2022).
ArticleCASGoogle Scholar
Ali, U. et al. Organochlorine pesticides (OCPs) in South Asian region: a review. Sci. Total. Env. 476–477, 705–717 (2014).
ArticleGoogle Scholar
Wong, F. et al. Organochlorine pesticides in soils and air of southern Mexico: chemical profiles and potential for soil emissions. Atmos. Env. 42, 7737–7745 (2008).
ArticleCASGoogle Scholar
Dalla Villa, R., de Carvalho Dores, E. F. G., Carbo, L. & Cunha, M. L. F. Dissipation of DDT in a heavily contaminated soil in Mato Grosso, Brazil. Chemosphere 64, 549–554 (2006).
ArticleCASGoogle Scholar
Chakraborty, P., Zhang, G., Li, J., Sivakumar, A. & Jones, K. C. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air–soil exchange. Env. Pollut. 204, 74–80 (2015).
ArticleCASGoogle Scholar
Lalah, J., Kaigwara, P., Getenga, Z., Mghenyi, J. & Wandiga, S. The major environmental factors that influence rapid disappearance of pesticides from tropical soils in Kenya. Toxicol. Environ. Chem. 81, 161–197 (2001).
ArticleCASGoogle Scholar
Rosendahl, I., Laabs, V., Atcha-Ahowé, C., James, B. & Amelung, W. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa. J. Env. Monit. 11, 1157–1164 (2009).
ArticleCASGoogle Scholar
Vryzas, Z. Pesticide fate in soil–sediment–water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health 4, 5–9 (2018).
ArticleGoogle Scholar
Schulz, R., Bub, S., Petschick, L. L., Stehle, S. & Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021).
ArticleCASGoogle Scholar
Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392 (2021).
ArticleCASGoogle Scholar
de Carvalho Dores, E. F. G. & Naria De-Lamonica-Freire, E. Contaminação do ambiente aquático por pesticidas: vias de contaminação e dinâmica dos pesticidas no ambiente aquático. Pesticidas Rev. Ecotoxicol. Ehttps://doi.org/10.5380/pes.v9i0.39598 (1999).
Hamada, N. et al. Insetos aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia (Editora do INPA, 2014).
Corbi, J. J., Froehlich, C. G., Strixino, S. T. & dos Santos, A. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Química Nova 33, 644–648 (2010).
ArticleCASGoogle Scholar
Heye, K., Lotz, T., Wick, A. & Oehlmann, J. Interactive effects of biotic and abiotic environmental stressors on carbamazepine toxicity in the non-biting midge Chironomus riparius. Water Res. 156, 92–101 (2019).
ArticleCASGoogle Scholar
Couceiro, S. R., Forsberg, B. R., Hamada, N. & Ferreira, R. Effects of an oil spill and discharge of domestic sewage on the insect fauna of Cururu stream, Manaus, AM, Brazil. Braz. J. Biol. 66, 35–44 (2006).
ArticleCASGoogle Scholar
Martins, R. T., Couceiro, S. R., Melo, A. S., Moreira, M. P. & Hamada, N. Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecol. Indic. 73, 480–491 (2017).
ArticleCASGoogle Scholar
Monchanin, C., Devaud, J.-M., Barron, A. B. & Lihoreau, M. Current permissible levels of metal pollutants harm terrestrial invertebrates. Sci. Total. Env. 779, 146398 (2021).
ArticleCASGoogle Scholar
Archer, C. et al. State of the Tropics 2020 report. James Cook Universityhttps://www.jcu.edu.au/state-of-the-tropics/publications/state-of-the-tropics-2020-report (2020).
Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
ArticleCASGoogle Scholar
Bonebrake, T. C. et al. Tropical cities as windows into the ecosystems of our present and future. Biotropica 57, e13369 (2025).
ArticleGoogle Scholar
New, T. R. Promoting and developing insect conservation in Australia’s urban environments. Austral Entomol. 57, 182–193 (2018).
ArticleGoogle Scholar
Md Meftaul, I., Venkateswarlu, K., Dharmarajan, R., Annamalai, P. & Megharaj, M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total. Environ. 711, 134612 (2020).
ArticleCASGoogle Scholar
Gaona, F. P., Iñiguez-Armijos, C., Brehm, G., Fiedler, K. & Espinosa, C. I. Drastic loss ofinsects (Lepidoptera: Geometridae) in urban landscapes in a tropical biodiversity hotspot. J. Insect Conserv. 25, 395–405 (2021).
ArticleGoogle Scholar
Zakardjian, M., Geslin, B., Mitran, V., Franquet, E. & Jourdan, H. Effects of urbanization on plant–pollinator interactions in the tropics: an experimental approach using exotic plants. Insects 11, 773 (2020).
ArticleGoogle Scholar
Wenzel, A., Grass, I., Nölke, N., Pannure, A. & Tscharntke, T. Wild bees benefit from low urbanization levels and suffer from pesticides in a tropical megacity. Agricult. Ecosyst. Environ. 336, 108019 (2022).
ArticleGoogle Scholar
Sing, K.-W. et al. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in southeast Asian megacities. Genome 59, 827–839 (2016).
ArticleGoogle Scholar
Antonini, Y., Martins, R. P., Aguiar, L. M. & Loyola, R. D. Richness, composition and trophic niche of stingless bee assemblages in urban forest remnants. Urban. Ecosyst. 16, 527–541 (2013).
ArticleGoogle Scholar
Wiederkehr, F. et al. Urbanisation affects ecosystem functioning more than structure in tropical streams. Biol. Conserv. 249, 108634 (2020).
ArticleGoogle Scholar
Ensaldo-Cárdenas, A. S., Rocha-Ortega, M., Schneider, D., Robertson, B. A. & Córdoba-Aguilar, A. Ultraviolet polarized light and individual condition drive habitat selection in tropical damselflies and dragonflies. Anim. Behav. 180, 229–238 (2021).
ArticleGoogle Scholar
Shivanna, K. R. Impact of light pollution on nocturnal pollinators and their pollination services. Proc. Indian Natl Sci. Acad. 88, 626–633 (2022).
ArticleGoogle Scholar
Desouhant, E., Gomes, E., Mondy, N. & Amat, I. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomol. Exp. Appl. 167, 37–58 (2019).
ArticleGoogle Scholar
Freitas, J. R. D., Bennie, J., Mantovani, W. & Gaston, K. J. Exposure of tropical ecosystems to artificial light at night: Brazil as a case study. PLoS ONE 12, e0171655 (2017).
ArticleGoogle Scholar
Andrade-Núñez, M. J. & Aide, T. M. Using nighttime lights to assess infrastructure expansion within and around protected areas in South America. Environ. Res. Commun. 2, 021002 (2020).
ArticleGoogle Scholar
Camacho, L. F., Barragán, G. & Espinosa, S. Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biol. Conserv. 262, 109311 (2021).
ArticleGoogle Scholar
Pan, H., Liang, G. & Lu, Y. Response of different insect groups to various wavelengths of light under field conditions. Insects 12, 427 (2021).
ArticleGoogle Scholar
Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7, eabi8322 (2021).
ArticleGoogle Scholar
Deichmann, J. L. et al. Reducing the blue spectrum of artificial light at night minimises insect attraction in a tropical lowland forest. Insect Conserv. Divers. 14, 247–259 (2021).
ArticleGoogle Scholar
Coleman, J. L., Lum, D. W. H. & Yao, X. From sodium-vapour to LEDs: how an outdoor lighting retrofit affects insects in Singapore. J. Urban. Ecol. 9, juad009 (2023).
ArticleGoogle Scholar
Wilson, A. A. et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Change Biol. 27, 3987–4004 (2021).
ArticleCASGoogle Scholar
Kalinkat, G. et al. Assessing long-term effects of artificial light at night on insects: what is missing and how to get there. Insect Conserv. Divers. 14, 260–270 (2021).
ArticleGoogle Scholar
Kfir, R. Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 90, 619–624 (1997).
ArticleGoogle Scholar
Overholt, W. A. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1640–1641 (Springer Netherlands, 2008).
Fortuna, T. M., Le Gall, P., Mezdour, S. & Calatayud, P.-A. Impact of invasive insects on native insect communities. Curr. Opin. Insect Sci. 51, 100904 (2022).
ArticleGoogle Scholar
Lach, L., Tillberg, C. V. & Suarez, A. V. Contrasting effects of an invasive ant on a native and an invasive plant. Biol. Invasions 12, 3123–3133 (2010).
ArticleGoogle Scholar
Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).
ArticleGoogle Scholar
Tallamy, D. W., Narango, D. L. & Mitchell, A. B. Do non-native plants contribute to insect declines? Ecol. Entomol. 46, 729–742 (2021).
ArticleGoogle Scholar
Stroud, J. T. & Feeley, K. J. A downside of diversity? A response to Gallagher et al. Trends Ecol. Evol. 30, 296–297 (2015).
ArticleGoogle Scholar
Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).
ArticleCASGoogle Scholar
Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).
ArticleGoogle Scholar
Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Phil. Trans. R. Soc. B 372, 20160345 (2017).
ArticleGoogle Scholar
Law, S. J. et al. Darker ants dominate the canopy: testing macroecological hypotheses for patterns in colour along a microclimatic gradient. J. Anim. Ecol. 89, 347–359 (2020).
ArticleGoogle Scholar
Jucker, T. et al. A research agenda for microclimate ecology in human-modified tropical forests. Front. For. Glob. Change 2, 92 (2020).
ArticleGoogle Scholar
Williamson, J. et al. Local‐scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Funct. Ecol. 36, 1655–1667 (2022).
ArticleGoogle Scholar
Moore, M. P., Nalley, S. E. & Hamadah, D. An evolutionary innovation for mating facilitates ecological niche expansion and buffers species against climate change. Proc. Natl Acad. Sci. USA 121, e2313371121 (2024).
ArticleCASGoogle Scholar
Parrett, J. M., Mann, D. J., Chung, A. Y., Slade, E. M. & Knell, R. J. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. 22, 1629–1637 (2019).
ArticleGoogle Scholar
Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).
ArticleCASGoogle Scholar
Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: the role of species dispersal and landscape configuration. Divers. Distrib. 24, 1598–1611 (2018).
ArticleGoogle Scholar
Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).
ArticleCASGoogle Scholar
Schebeck, M. et al. Seasonality of forest insects: why diapause matters. Trends Ecol. Evol. 39, 757–770 (2024).
ArticleGoogle Scholar
Hoffmann, A. A. & Bridle, J. Plasticity and the costs of incorrect responses. Trends Ecol. Evol. 38, 219–220 (2023).
ArticleGoogle Scholar
da Silva, C. R., Beaman, J. E., Youngblood, J. P., Kellermann, V. & Diamond, S. E. Vulnerability to climate change increases with trophic level in terrestrial organisms. Sci. Total. Environ. 865, 161049 (2023).
ArticleGoogle Scholar
Wenda, C. et al. Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecol. Lett. 26, 278–290 (2023).
ArticleGoogle Scholar
Parr, C. L. & Bishop, T. R. The response of ants to climate change. Glob. Change Biol. 28, 3188–3205 (2022).
ArticleCASGoogle Scholar
Novotny, V. et al. Why are there so many species of herbivorous insects in tropical rainforests? Science 313, 1115–1118 (2006).
ArticleCASGoogle Scholar
Coley, P. D. & Barone, J. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).
ArticleGoogle Scholar
Agrawal, A. A. & Maron, J. L. Long‐term impacts of insect herbivores on plant populations and communities. J. Ecol. 110, 2800–2811 (2022).
ArticleGoogle Scholar
Szefer, P., Molem, K., Sau, A. & Novotny, V. Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. J. Ecol. 108, 1978–1988 (2020).
ArticleCASGoogle Scholar
Ruiz‐Guerra, B., Guevara, R., Mariano, N. A. & Dirzo, R. Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119, 317–325 (2010).
ArticleGoogle Scholar
Lewis, O. T. & Gripenberg, S. Insect seed predators and environmental change. J. Appl. Ecol. 45, 1593–1599 (2008).
ArticleGoogle Scholar
Novotny, V. et al. Guild‐specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J. Anim. Ecol. 79, 1193–1203 (2010).
ArticleGoogle Scholar
Ingala, M. R. et al. Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecol. Evol. 11, 7474–7491 (2021).
ArticleGoogle Scholar
Hemprich‐Bennett, D. R. et al. Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Mol. Ecol. 30, 5844–5857 (2021).
ArticleGoogle Scholar
Hawkins, B. A., Cornell, H. V. & Hochberg, M. E. Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78, 2145–2152 (1997).
ArticleGoogle Scholar
Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634 (2016).
ArticleGoogle Scholar
Ashton, L. A. et al. Termites mitigate the ecosystem-wide effects of drought in tropical rainforest. Science 363, 174–177 (2019).
ArticleCASGoogle Scholar
Griffiths, H. M., Ashton, L. A., Parr, C. L. & Eggleton, P. The impact of invertebrate decomposers on plants and soil. N. Phytol. 231, 2142–2149 (2021).
ArticleGoogle Scholar
Barton, P. S. & Evans, M. J. Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. Ecol. Entomol. 42, 364–374 (2017).
ArticleGoogle Scholar
Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).
ArticleCASGoogle Scholar
Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).
ArticleCASGoogle Scholar
Zeng, X. et al. Global contribution of invertebrates to forest litter decomposition. Ecol. Lett. 27, e14423 (2024).
ArticleGoogle Scholar
Medina Madariaga, G. et al. Multiple-stressor effects on leaf litter decomposition in freshwater ecosystems: a meta-analysis. Funct. Ecol. 38, 1523–1536 (2024).
ArticleCASGoogle Scholar
Lemes da Silva, A. L., Lemes, W. P., Andriotti, J., Petrucio, M. M. & Feio, M. J. Recent land-use changes affect stream ecosystem processes in a subtropical island in Brazil. Austral Ecol. 45, 644–658 (2020).
ArticleGoogle Scholar
Pérez, J. et al. Agricultural impacts on lowland tropical streams detected through leaf litter decomposition. Ecol. Indic. 154, 110819 (2023).
ArticleGoogle Scholar
Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).
ArticleGoogle Scholar
Nooten, S. S., Chan, K. H., Schultheiss, P., Bogar, T. A. & Guénard, B. Ant body size mediates functional performance and species interactions in carrion decomposer communities. Funct. Ecol. 36, 1279–1291 (2022).
ArticleCASGoogle Scholar
Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv. 137, 1–19 (2007).
ArticleGoogle Scholar
Gregory, N., Gómez, A., Oliveira, T. M. Fd. S. & Nichols, E. Big dung beetles dig deeper: trait-based consequences for faecal parasite transmission. Int. J. Parasitol. 45, 101–105 (2015).
ArticleGoogle Scholar
Alvarado-Montero, S., Boesing, A. L., Metzger, J. P. & Jaffé, R. Higher forest cover and less contrasting matrices improve carrion removal service by scavenger insects in tropical landscapes. J. Appl. Ecol. 58, 2637–2649 (2021).
ArticleGoogle Scholar
Ferreira, P. A. et al. Forest and connectivity loss simplify tropical pollination networks. Oecologia 192, 577–590 (2020).
ArticleGoogle Scholar
Millard, J. et al. Key tropical crops at risk from pollinator loss due to climate change and land use. Sci. Adv. 9, eadh0756 (2023).
ArticleGoogle Scholar
Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).
ArticleCASGoogle Scholar
Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481 (2019).
ArticleCASGoogle Scholar
Saunders, M. E. et al. Climate mediates roles of pollinator species in plant–pollinator networks. Glob. Ecol. Biogeogr. 32, 511–518 (2023).
ArticleGoogle Scholar
Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).
ArticleGoogle Scholar
Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).
ArticleCASGoogle Scholar
Li, K., Tscharntke, T., Saintes, B., Buchori, D. & Grass, I. Critical factors limiting pollination success in oil palm: a systematic review. Agric. Ecosyst. Environ. 280, 152–160 (2019).
ArticleGoogle Scholar
Chai, S. K. & Wong, S. Y. Five pollination guilds of aroids (Araceae) at Mulu National Park (Sarawak, Malaysian Borneo). Webbia 74, 353–371 (2019).
ArticleGoogle Scholar
Sakai, S., Momose, K., Yumoto, T., Kato, M. & Inoue, T. Beetle pollination of Shorea parvifolia (section Mutica, Dipterocarpaceae) in a general flowering period in Sarawak, Malaysia. Am. J. Bot. 86, 62–69 (1999).
ArticleCASGoogle Scholar
Wardhaugh, C. W. How many species of arthropods visit flowers? Arthropod–Plant Interact. 9, 547–565 (2015).
ArticleGoogle Scholar
Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant–pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).
ArticleGoogle Scholar
Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).
ArticleCASGoogle Scholar
Soares, R. G. S., Ferreira, P. A. & Lopes, L. E. Can plant–pollinator network metrics indicate environmental quality? Ecol. Indic. 78, 361–370 (2017).
ArticleGoogle Scholar
Zoller, L., Bennett, J. & Knight, T. M. Plant–pollinator network change across a century in the subarctic. Nat. Ecol. Evol. 7, 102–112 (2023).
ArticleGoogle Scholar
Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).
ArticleCASGoogle Scholar
Saunders, M. Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agric. For. Entomol. 20, 298–300 (2018).
ArticleGoogle Scholar
Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).
ArticleGoogle Scholar
Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).
ArticleGoogle Scholar
Blonder, B. et al. Extreme and highly heterogeneous microclimates in selectively logged tropical forests. Front. For. Glob. Change 1, 5 (2018).
ArticleGoogle Scholar
van Klink, R. Delivering on a promise: futureproofing automated insect monitoring methods. Phil. Trans. R. Soc. B 379, 20230105 (2024).
ArticleGoogle Scholar
Buchner, D. et al. Upscaling biodiversity monitoring: metabarcoding estimates 31,846 insect species from Malaise traps across Germany. Mol. Ecol. Resour. 25, e14023 (2024).
ArticleGoogle Scholar
Alvarado-Robledo, E. J. et al. Metabarcoding: opportunities for accelerating monitoring and understanding insect tropical biodiversity. J. Insect Conserv. 28, 589–604 (2024).
ArticleGoogle Scholar
Strutzenberger, P. et al. DNA metabarcoding of light trap samples vs. morphological species identification. Ecol. Entomol. 49, 245–256 (2024).
ArticleGoogle Scholar
Sire, L. et al. Persisting roadblocks in arthropod monitoring using non-destructive metabarcoding from collection media of passive traps. PeerJ 11, e16022 (2023).
ArticleGoogle Scholar
Souto-Vilarós, D. et al. Illuminating arthropod diversity in a tropical forest: assessing biodiversity by automatic light trapping and DNA metabarcoding. Environ. DNA 6, e540 (2024).
ArticleGoogle Scholar
Creedy, T. J., Ng, W. S. & Vogler, A. P. Toward accurate species‐level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 9, 3105–3116 (2019).
ArticleGoogle Scholar
Iwaszkiewicz-Eggebrecht, E. et al. FAVIS: fast and versatile protocol for non-destructive metabarcoding of bulk insect samples. PLoS ONE 18, e0286272 (2023).
ArticleCASGoogle Scholar
Macher, T.-H., Schütz, R., Hörren, T., Beermann, A. J. & Leese, F. It’s raining species: rainwash eDNA metabarcoding as a minimally invasive method to assess tree canopy invertebrate diversity. Environ. DNA 5, 3–11 (2023).
ArticleGoogle Scholar
Arribas, P. et al. Toward global integration of biodiversity big data: a harmonized metabarcode data generation module for terrestrial arthropods. GigaScience 11, giac065 (2022).
ArticleGoogle Scholar
Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).
ArticleGoogle Scholar
Chua, P. Y. S. et al. Future of DNA-based insect monitoring. Trends Genet. 39, 531–544 (2023).
ArticleCASGoogle Scholar
Meier, R., Hartop, E., Pylatiuk, C. & Srivathsan, A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Phil. Trans. R. Soc. B 379, 20230120 (2024).
ArticleGoogle Scholar
Geiger, M. F. et al. Testing the global Malaise trap program — how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).
ArticleGoogle Scholar
Do Nascimento, L. A., Pérez-Granados, C., Alencar, J. B. R. & Beard, K. H. Time and habitat structure shape insect acoustic activity in the Amazon. Phil. Trans. R. Soc. B 379, 20230112 (2024).
ArticleGoogle Scholar
Sethi, S. S. et al. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set. Proc. Natl Acad. Sci. USA 117, 17049–17055 (2020).
ArticleCASGoogle Scholar
Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real‐time and autonomous monitoring of ecosystems with an open, low‐cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).
ArticleGoogle Scholar
Haest, B. et al. Continental-scale patterns in diel flight timing of high-altitude migratory insects. Phil. Trans. R. Soc. B 379, 20230116 (2024).
ArticleGoogle Scholar
Bauer, S., Tielens, E. K. & Haest, B. Monitoring aerial insect biodiversity: a radar perspective. Phil. Trans. R. Soc. B 379, 20230113 (2024).
ArticleGoogle Scholar
Liu, D. et al. Radar monitoring unveils migration dynamics of the yellow-spined bamboo locust (Orthoptera: Arcypteridae). Comput. Electron. Agric. 187, 106306 (2021).
ArticleGoogle Scholar
Anjita, N. A. et al. Doppler weather radars as a game changer in desert locust swarm tracking. Sci. Rep. 14, 31715 (2024).
ArticleCASGoogle Scholar
Chen, H. et al. Lidar as a potential tool for monitoring migratory insects. iScience 27, 109588 (2024).
ArticleGoogle Scholar
Wang, Y., Zhao, C., Dong, D. & Wang, K. Real-time monitoring of insects based on laser remote sensing. Ecol. Indic. 151, 110302 (2023).
ArticleGoogle Scholar
Rydhmer, K. et al. Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 12, 2603 (2022).
ArticleCASGoogle Scholar
Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).
ArticleGoogle Scholar
Møller, A. P. et al. Citizen science for quantification of insect abundance on windshields of cars across two continents. Front. Ecol. Evol. 9, 657178 (2021).
ArticleGoogle Scholar
Slade, E. M. & Ong, X. R. The future of tropical insect diversity: strategies to fill data and knowledge gaps. Curr. Opin. Insect Sci. 58, 101063 (2023).
ArticleGoogle Scholar
Sánchez Herrera, M. et al. Systematic challenges and opportunities in insect monitoring: a Global South perspective. Phil. Trans. R. Soc. B 379, 20230102 (2024).
ArticleGoogle Scholar
Grinder, R. M. & Wiens, J. J. Niche width predicts extinction from climate change and vulnerability of tropical species. Glob. Change Biol. 29, 618–630 (2023).
ArticleCASGoogle Scholar
Ollerton, J. Biogeography: are tropical species less specialised? Curr. Biol. 22, R914–R915 (2012).
ArticleCASGoogle Scholar
Doré, M. et al. Mutualistic interactions shape global spatial congruence and climatic niche evolution in neotropical mimetic butterflies. Ecol. Lett. 26, 843–857 (2023).
ArticleGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
ArticleCASGoogle Scholar
Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41, 1184–1193 (2018).
ArticleGoogle Scholar
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
ArticleGoogle Scholar
Boyle, M. J. The Resilience of Tropical Forest Invertebrates to Microclimate Change. PhD thesis (Imperial College London, 2020).
Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am. Nat. 178, S80–S96 (2011).
ArticleGoogle Scholar
Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).
ArticleGoogle Scholar
Scheffers, B. R., Evans, T. A., Williams, S. E. & Edwards, D. P. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol. Lett. 10, 20140819 (2014).
ArticleGoogle Scholar
Kang, C. et al. Climate predicts both visible and near-infrared reflectance in butterflies. Ecol. Lett. 24, 1869–1879 (2021).
ArticleGoogle Scholar
Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).
ArticleCASGoogle Scholar
Henle, K., Sarre, S. & Wiegand, K. The role of density regulation in extinction processes and population viability analysis. Biodivers. Conserv. 13, 9–52 (2004).
ArticleGoogle Scholar
Porter, E. E. & Hawkins, B. A. Latitudinal gradients in colony size for social insects: termites and ants show different patterns. Am. Nat. 157, 97–106 (2001).
ArticleCASGoogle Scholar
Kaspari, M. & Vargo, E. L. Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am. Nat. 145, 610–632 (1995).
ArticleGoogle Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
ArticleCASGoogle Scholar
Muñoz Sabater, J. ERA5 — Land monthly averaged data from 1981 to present. Copernicus Climate Change Service Climate Data Storehttps://essd.copernicus.org/articles/13/4349/2021/essd-13-4349-2021-assets.html (2019).
Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote. Sens. 13, 922 (2021).
ArticleGoogle Scholar
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).
ArticleGoogle Scholar
Chuvieco, E. et al. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel product, version 5.1. Centre for Environmental Data Analysishttps://cir.nii.ac.jp/crid/1880583643079782016 (2018).
Maggi, F., Tang, F., La Cecilia, D. & McBratney, A. Global pesticide grids (PEST-CHEMGRIDS), version 1.01. NASA Socioeconomic Data and Applications Center (SEDAC)https://www.earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-fermanv1-pestg-v1.01-1.01 (2020)
Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).
Google Scholar
Sharp, A. C., Barclay, M. V., Chung, A. Y. & Ewers, R. M. Tropical logging and deforestation impacts multiple scales of weevil beta-diversity. Biol. Conserv. 234, 172–179 (2019).
ArticleGoogle Scholar
Tawatao, N. et al. Biodiversity of leaf-litter ants in fragmented tropical rainforests of Borneo: the value of publically and privately managed forest fragments. Biodivers. Conserv. 23, 3113–3126 (2014).
ArticleGoogle Scholar
Scriven, S. A. et al. Assessing the effectiveness of protected areas for conserving range‐restricted rain forest butterflies in Sabah, Borneo. Biotropica 52, 380–391 (2020).
ArticleGoogle Scholar
Hanski, I., Koivulehto, H., Cameron, A. & Rahagalala, P. Deforestation and apparent extinctions of endemic forest beetles in Madagascar. Biol. Lett. 3, 344–347 (2007).
ArticleGoogle Scholar
Fonseca, C. R. The silent mass extinction of insect herbivores in biodiversity hotspots. Conserv. Biol. 23, 1507–1515 (2009).
ArticleGoogle Scholar
Ranarilalatiana, T. et al. Remaining forests on the central highlands of Madagascar — endemic and endangered aquatic beetle fauna uncovered. Ecol. Evol. 12, e9580 (2022).
ArticleGoogle Scholar
Steibl, S., Franke, J. & Laforsch, C. Tourism and urban development as drivers for invertebrate diversity loss on tropical islands. R. Soc. Open. Sci. 8, 210411 (2021).
ArticleGoogle Scholar
Wagner, D. L. & Van Driesche, R. G. Threats posed to rare or endangered insects by invasions of non-native species. Annu. Rev. Entomol. 55, 547–568 (2010).
ArticleCASGoogle Scholar
Corlett, R. T. Invasive aliens on tropical East Asian islands. Biodivers. Conserv. 19, 411–423 (2010).
ArticleGoogle Scholar
Roy, H. et al. Summary for policymakers of the thematic assessment report on invasive alien species and their control. IPBEShttps://www.ipbes.net/ias (2023).
Gray, A. et al. The status of the invertebrate fauna on the South Atlantic island of St Helena: problems, analysis, and recommendations. Biodivers. Conserv. 28, 275–296 (2019).
ArticleGoogle Scholar
Tercel, M. P., Cuff, J. P., Symondson, W. O. & Vaughan, I. P. Non‐native ants drive dramatic declines in animal community diversity: a meta‐analysis. Insect Conserv. Divers. 16, 733–744 (2023).
ArticleGoogle Scholar
Sharp, A. & Tawatao, N. Colonization and coexistence of non‐native ants on a model Atlantic island. Divers. Distrib. 29, 1278–1288 (2023).
ArticleGoogle Scholar
Roura‐Pascual, N., Sanders, N. J. & Hui, C. The distribution and diversity of insular ants: do exotic species play by different rules? Glob. Ecol. Biogeogr. 25, 642–654 (2016).
ArticleGoogle Scholar
Aulus-Giacosa, L., Ollier, S. & Bertelsmeier, C. Non-native ants are breaking down biogeographic boundaries and homogenizing community assemblages. Nat. Commun. 15, 2266 (2024).
ArticleCASGoogle Scholar
Wetterer, J. K. Worldwide spread of the African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Myrmecol. N. 17, 51–62 (2012).
Google Scholar
Nakamura, A. et al. The role of human disturbance in island biogeography of arthropods and plants: an information theoretic approach. J. Biogeogr. 42, 1406–1417 (2015).
ArticleGoogle Scholar
Wetterer, J. K. Biology and impacts of Pacific Island invasive species. 3. The African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Pacif. Sci. 61, 437–456 (2007).
ArticleGoogle Scholar
Wetterer, J. K. & Espadaler, X. Ants (Hymenoptera: Formicidae) of the Cabo Verde Islands. Trans. Am. Entomol. Soc. 147, 485–502 (2021).
ArticleGoogle Scholar
St Clair, J. J. The impacts of invasive rodents on island invertebrates. Biol. Conserv. 144, 68–81 (2011).
ArticleGoogle Scholar
Harper, G. A. & Bunbury, N. Invasive rats on tropical islands: their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).
Google Scholar
Ashmole, P. & Ashmole, M. St Helena and Ascension Island: a Natural History (Anthony Nelson, 2000).
Priddel, D., Carlile, N., Humphrey, M., Fellenberg, S. & Hiscox, D. Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation. Biodivers. Conserv. 12, 1391–1403 (2003).
ArticleGoogle Scholar
Kwak, M. L. Australia’s vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. J. Insect Conserv. 22, 545–550 (2018).
ArticleGoogle Scholar
Pickering, J. & Norris, C. A. New evidence concerning the extinction of the endemic murid Rattus macleari from Christmas Island, Indian Ocean. Aust. Mammal. 19, 19–25 (1996).
ArticleGoogle Scholar
Russell, J. C. & Holmes, N. D. Tropical island conservation: rat eradication for species recovery. Biol. Conserv. 185, 1–7 (2015).
ArticleGoogle Scholar
Gaigher, R., Samways, M., Jolliffe, K. & Jolliffe, S. Precision control of an invasive ant on an ecologically sensitive tropical island: a principle with wide applicability. Ecol. Appl. 22, 1405–1412 (2012).
ArticleCASGoogle Scholar
Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).
ArticleCASGoogle Scholar
Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).
ArticleCASGoogle Scholar
Fukagawa, N. K. & Ziska, L. H. Rice: importance for global nutrition. J. Nutr. Sci. Vitaminol. 65, S2–S3 (2019).
ArticleGoogle Scholar
Heong. K. L., Song, Y. H., Pimsamarn, S., Zhang, R. & Bae, S. D. in Climate Change and Rice (eds Peng, S. et al.) 326–335 (Springer, 1995).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
ArticleGoogle Scholar
Malcolm, S. B. Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annu. Rev. Entomol. 63, 277–302 (2018).
ArticleCASGoogle Scholar
Kenna, D. et al. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol. Evol. 9, 5637–5650 (2019).
ArticleGoogle Scholar
Farnan, H., Yeeles, P. & Lach, L. Sublethal doses of insecticide reduce thermal tolerance of a stingless bee and are not avoided in a resource choice test. R. Soc. Open. Sci. 10, 230949 (2023).
ArticleCASGoogle Scholar
Gintoron, C. S. et al. Factors affecting pollination and pollinators in oil palm plantations: a review with an emphasis on the Elaeidobius kamerunicus weevil (Coleoptera: Curculionidae). Insects 14, 454 (2023).
ArticleGoogle Scholar
Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).
ArticleGoogle Scholar
Williamson, J. et al. Riparian buffers act as a microclimatic refugia in oil palm landscapes. J. Appl. Ecol. 58, 431–442 (2021).
ArticleGoogle Scholar
Mohd-Azlan, J., Conway, S., Travers, T. & Lawes, M. The filtering effect of oil palm plantations on potential insect pollinator assemblages from remnant forest patches. Land 12, 1256 (2023).
ArticleGoogle Scholar
Vector-borne diseases. World Health Organizationhttps://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2024).
Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).
ArticleGoogle Scholar
Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).
ArticleGoogle Scholar
Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in southeast Asia. Nat. Commun. 10, 4299 (2019).
ArticleGoogle Scholar
KM, F. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).
ArticleGoogle Scholar
Brady, O. J. & Hay, S. I. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).
ArticleCASGoogle Scholar
Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).
ArticleGoogle Scholar
Chaves, L. F., Cohen, J. M., Pascual, M. & Wilson, M. L. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl. Trop. Dis. 2, e176 (2008).
ArticleGoogle Scholar
Narladkar, B. W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World 11, 151–160 (2018).
ArticleCASGoogle Scholar
Download references
Acknowledgements
This work was supported by the RGC Collaborative Research Fund (C7048-22GF) and the NSFC National Excellent Young Scientist Fund (AR215206). F.M.F. and K.D.d.S. are funded by the UKRI FLF (MR/X032949/1]) and CNPq (311550/2023-1, 443860/2024-6, 441257/2023-2 and 444350/2024-1). O.T.L. is funded by NERC NE/X000117/1. The authors thank P. Eggleton for comments on an early version of this manuscript and V. Amaral for assistance with Fig. 3.
Author information
Authors and Affiliations
School of Biological Sciences, The University of Hong Kong, Hong Kong, China
Michael J. W. Boyle, Timothy C. Bonebrake, Michel A. K. Dongmo, Martha J. Ledger, Adam C. Sharp & Louise A. Ashton
Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
Karina Dias da Silva & Filipe Machado França
School of Biological Sciences, University of Bristol, Bristol, UK
Filipe Machado França
EcoHealth Alliance, New York, NY, USA
Nichar Gregory
School of Environment and Science, Griffith University, Nathan, Queensland, Australia
Roger L. Kitching & Nigel E. Stork
Department of Biology, University of Oxford, Oxford, UK
Owen T. Lewis
IUCN SSC Atlantic Island Invertebrate Specialist Group, Salisbury, UK
Adam C. Sharp
Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
Joseph Williamson
Authors
Michael J. W. Boyle
View author publications
You can also search for this author inPubMedGoogle Scholar
2. Timothy C. Bonebrake
View author publications
You can also search for this author inPubMedGoogle Scholar
3. Karina Dias da Silva
View author publications
You can also search for this author inPubMedGoogle Scholar
4. Michel A. K. Dongmo
View author publications
You can also search for this author inPubMedGoogle Scholar
5. Filipe Machado França
View author publications
You can also search for this author inPubMedGoogle Scholar
6. Nichar Gregory
View author publications
You can also search for this author inPubMedGoogle Scholar
7. Roger L. Kitching
View author publications
You can also search for this author inPubMedGoogle Scholar
8. Martha J. Ledger
View author publications
You can also search for this author inPubMedGoogle Scholar
9. Owen T. Lewis
View author publications
You can also search for this author inPubMedGoogle Scholar
10. Adam C. Sharp
View author publications
You can also search for this author inPubMedGoogle Scholar
11. Nigel E. Stork
View author publications
You can also search for this author inPubMedGoogle Scholar
12. Joseph Williamson
View author publications
You can also search for this author inPubMedGoogle Scholar
13. Louise A. Ashton
View author publications
You can also search for this author inPubMedGoogle Scholar
Contributions
M.J.W.B. and L.A.A. conceptualized and led the development of the manuscript. All authors contributed equally to the writing and editing.
Corresponding author
Correspondence to Louise A. Ashton.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Biodiversity thanks G. Maharaj, D. Amorim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Check for updates. Verify currency and authenticity via CrossMark
Cite this article
Boyle, M.J.W., Bonebrake, T.C., Dias da Silva, K. et al. Causes and consequences of insect decline in tropical forests. Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00038-9
Download citation
Accepted:05 March 2025
Published:04 April 2025
DOI:https://doi.org/10.1038/s44358-025-00038-9
Share this article
Anyone you share the following link with will be able to read this content:
Get shareable link
Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative