nature.com

Causes and consequences of insect decline in tropical forests

Abstract

Insects are crucial for the functioning of ecosystems and might be facing declines globally, although data are biased away from the tropics where insect diversity and abundance are highest. In this Review, we assess the current status of insect populations in the tropics and discuss the prevailing threats to tropical insect biodiversity. Burgeoning human populations, increasing urbanization and land-use changes are leading to habitat loss and fragmentation, as well as increased pollution, including both light and pesticides. Insects on tropical islands are particularly sensitive to invasive species, which have already led to the extinction of multiple unique endemic species. Climate change further threatens insect populations across the tropics and might be disrupting crucial weather cycles such as El Niño and La Niña, which are important drivers of phenology and synchrony at these latitudes. Tropical insect declines might alter fundamental ecosystem processes such as nutrient cycling, carbon sequestration and herbivory. Disruption of food webs could lead to increased outbreaks of pests and of insect-vectored diseases in humans and livestock, affecting human health and reducing food security. Methodological advances — including artificial intelligence and computer vision, remote sensing and meta-barcoding — are facilitating taxonomy, speeding up identification of diverse samples and improving the monitoring of tropical insect biodiversity to guide future conservation efforts.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Learn more

Buy this article

Purchase on SpringerLink

Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Geographic distribution of publicly accessible datasets for tracking tropical insect communities through time.

Fig. 2: The global distribution of threats to tropical insects.

Fig. 3: Ecological effects of declining insect diversity and abundance.

References

Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

ArticleGoogle Scholar

Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).

ArticleCASGoogle Scholar

Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land‐use change influence broad‐scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).

ArticleGoogle Scholar

Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).

ArticleCASGoogle Scholar

Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Env. 20, 10–15 (2022).

ArticleGoogle Scholar

Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

ArticleCASGoogle Scholar

Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

ArticleCASGoogle Scholar

Eggleton, P. The state of the world’s insects. Annu. Rev. Environ. Resour. 45, 61–82 (2020).

ArticleGoogle Scholar

Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).

ArticleGoogle Scholar

Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).

ArticleGoogle Scholar

McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

ArticleGoogle Scholar

Li, X. & Wiens, J. J. Estimating global biodiversity: the role of cryptic insect species. Syst. Biol. 72, 391–403 (2023).

ArticleGoogle Scholar

van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

ArticleGoogle Scholar

Lindenmayer, D. B. et al. Value of long‐term ecological studies. Austral Ecol. 37, 745–757 (2012).

ArticleGoogle Scholar

Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

ArticleCASGoogle Scholar

Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl Acad. Sci. USA 118, e2002548117 (2021).

ArticleCASGoogle Scholar

Bonebrake, T. C. & Deutsch, C. A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 93, 449–455 (2012).

ArticleGoogle Scholar

Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

ArticleCASGoogle Scholar

Nash, L. N. et al. Latitudinal patterns of aquatic insect emergence driven by climate. Glob. Ecol. Biogeogr. 32, 1323–1335 (2023).

ArticleGoogle Scholar

Dewenter, B. S. et al. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis. Ecol. Evol. 14, e10937 (2024).

ArticleGoogle Scholar

Colwell, R. K. & Feeley, K. J. Still little evidence of poleward range shifts in the tropics, but lowland biotic attrition may be underway. Biotropicahttps://doi.org/10.1111/btp.13358 (2024).

Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

ArticleGoogle Scholar

Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

ArticleCASGoogle Scholar

Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).

ArticleGoogle Scholar

Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

ArticleGoogle Scholar

Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

ArticleCASGoogle Scholar

Crespo-Pérez, V., Kazakou, E., Roubik, D. W. & Cárdenas, R. E. The importance of insects on land and in water: a tropical view. Curr. Opin. Insect Sci. 40, 31–38 (2020).

ArticleGoogle Scholar

Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).

ArticleCASGoogle Scholar

Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L. & Salminen, J.-P. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338, 113–116 (2012).

ArticleCASGoogle Scholar

Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

ArticleCASGoogle Scholar

Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).

ArticleGoogle Scholar

Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

ArticleGoogle Scholar

Wright, S. J. Tropical forests in a changing environment. Trends Ecol. Evol. 20, 553–560 (2005).

ArticleGoogle Scholar

Nunes, C. A. et al. Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proc. Natl Acad. Sci. USA 119, e2202310119 (2022).

ArticleCASGoogle Scholar

Olarewaju, J. A., Akinlolu, S. A., Olalekan, K. A. & Abiodun, M. A. in Vegetation Dynamics, Changing Ecosystems and Human Responsibility (eds Hufnagel, L. & El-Esawi, M. A.) Ch. 9 (InTechOpen, 2022).

Faria, D. et al. The breakdown of ecosystem functionality driven by deforestation in a global biodiversity hotspot. Biol. Conserv. 283, 110126 (2023).

ArticleGoogle Scholar

Bos, M. M. et al. in Stability of Tropical Rainforest Margins: Linking Ecological, Economic and Social Constraints of Land Use and Conservation (eds. Tscharntke, T. et al.) 277–294 (Springer, 2007).

Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).

ArticleCASGoogle Scholar

Lamarre, G. P. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62, 295–330 (Elsevier, 2020).

Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).

ArticleGoogle Scholar

Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).

ArticleCASGoogle Scholar

Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diversity 13, 103–114 (2020).

ArticleGoogle Scholar

Corlett, R. T. & Primack, R. B. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 21, 104–110 (2006).

ArticleGoogle Scholar

Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).

ArticleCASGoogle Scholar

Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Change Biol. 15, 48–62 (2009).

ArticleGoogle Scholar

Silveira, M. V. F., Silva-Junior, C. H. L., Anderson, L. O. & Aragão, L. E. O. C. Amazon fires in the 21st century: the year of 2020 in evidence. Glob. Ecol. Biogeogr. 31, 2026–2040 (2022).

ArticleGoogle Scholar

Carvalho, R. L. et al. Pervasive gaps in Amazonian ecological research. Curr. Biol. 33, 3495–3504.e3494 (2023).

ArticleCASGoogle Scholar

Dornelas, M. et al. Quantifying temporal change in biodiversity: challenges and opportunities. Proc. R. Soc. B 280, 20121931 (2013).

ArticleGoogle Scholar

Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Env. 16, 222–230 (2018).

ArticleGoogle Scholar

Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nat. Ecol. Evol. 3, 1645–1649 (2019).

ArticleGoogle Scholar

Chechina, M. & Hamann, A. Climatic drivers of dipterocarp mass-flowering in south-east Asia. J. Trop. Ecol. 35, 108–117 (2019).

ArticleGoogle Scholar

Hosaka, T. et al. Abundance of insect seed predators and intensity of seed predation on Shorea (Dipterocarpaceae) in two consecutive masting events in peninsular Malaysia. J. Trop. Ecol. 27, 651–655 (2011).

ArticleGoogle Scholar

Kishimoto-Yamada, K. et al. Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a Bornean rainforest. Bull. Entomol. Res. 99, 217–227 (2009).

ArticleCASGoogle Scholar

Adamescu, G. S. et al. Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica 50, 418–430 (2018).

ArticleGoogle Scholar

Stork, N. E., Boyle, M. J., Wardhaugh, C. & Beaver, R. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Diversity 17, 1156–1166 (2024).

ArticleGoogle Scholar

Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).

ArticleCASGoogle Scholar

Brydegaard, M. et al. Towards global insect biomonitoring with frugal methods. Phil. Trans. R. Soc. B 379, 20230103 (2024).

ArticleCASGoogle Scholar

Bierman, A. & Lloyd, M. in Routledge Handbook of Insect Conservation (eds Pryke, J. S. et al.) 487–500 (Routledge, 2024).

Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).

ArticleGoogle Scholar

Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).

ArticleCASGoogle Scholar

França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Phil. Trans. R. Soc. B 375, 20190116 (2020).

ArticleGoogle Scholar

Ismaeel, A. et al. Patterns of tropical forest understory temperatures. Nat. Commun. 15, 549 (2024).

ArticleCASGoogle Scholar

Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).

ArticleGoogle Scholar

Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).

ArticleGoogle Scholar

Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

ArticleCASGoogle Scholar

Thomas, C., Jones, T. H. & Hartley, S. E. ‘‘Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).

ArticleGoogle Scholar

Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70, 80–89 (2019).

ArticleGoogle Scholar

Dudgeon, D., Ng, L. C. Y. & Tsang, T. P. N. Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming. Glob. Change Biol. 26, 6399–6412 (2020).

ArticleGoogle Scholar

Lamarre, G. P. A. et al. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biol. Lett. 18, 20210519 (2022).

ArticleGoogle Scholar

Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

ArticleCASGoogle Scholar

Sundar, S., Silva, D. P., de Oliveira Roque, F., Simião-Ferreira, J. & Heino, J. Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot. J. Insect Conserv. 25, 229–241 (2021).

ArticleGoogle Scholar

Abarca, M. & Spahn, R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67–74 (2021).

ArticleGoogle Scholar

Ma, G., Ma, C.-S., Lann, C. L. & van Baaren, J. in Effects of Climate Change on Insects: Physiological, Evolutionary, and Ecological Responses (eds González-Tokman, D. & Dáttilo, W.) Ch. 6 (Oxford Univ. Press, 2024).

Cornelissen, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163 (2011).

ArticleCASGoogle Scholar

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

ArticleGoogle Scholar

Boyle, M. J. et al. Localised climate change defines ant communities in human‐modified tropical landscapes. Funct. Ecol. 35, 1094–1108 (2021).

ArticleCASGoogle Scholar

Mirtl, M. et al. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci. Total. Env. 626, 1439–1462 (2018).

ArticleCASGoogle Scholar

Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Glob. Change Biol. 24, 5243–5258 (2018).

ArticleGoogle Scholar

Xing, S. et al. Ecological patterns and processes in the vertical dimension of terrestrial ecosystems. J. Anim. Ecol. 92, 538–551 (2023).

ArticleGoogle Scholar

Bujan, J. & Yanoviak, S. P. Behavioral response to heat stress of twig-nesting canopy ants. Oecologia 198, 947–955 (2022).

ArticleGoogle Scholar

Ewers, R. M. et al. Thresholds for adding degraded tropical forest to the conservation estate. Nature 631, 808–813 (2024).

ArticleCASGoogle Scholar

Intergovernmental Panel on Climate Change (IPCC). AR6 Synthesis Report: Climate Change 2023. Contribution of Working Group I to the Six Assessment Report of the Intergovernmental Panel on Climate Change. IPCChttps://www.ipcc.ch/report/sixth-assessment-report-cycle/ (2023).

Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Change Biol. 26, 6685–6701 (2020).

ArticleGoogle Scholar

Newell, F. L., Ausprey, I. J. & Robinson, S. K. Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. Glob. Change Biol. 29, 308–323 (2023).

ArticleCASGoogle Scholar

Tng, D. Y. P. et al. Drought reduces the growth and health of tropical rainforest understory plants. For. Ecol. Manage 511, 120128 (2022).

ArticleGoogle Scholar

McCluney, K. E. Implications of animal water balance for terrestrial food webs. Curr. Opin. Insect Sci. 23, 13–21 (2017).

ArticleGoogle Scholar

Chaves, L. F., Morrison, A. C., Kitron, U. D. & Scott, T. W. Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. Glob. Change Biol. 18, 457–468 (2012).

ArticleGoogle Scholar

Van Bael, S. A. et al. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20, 625–633 (2004).

ArticleGoogle Scholar

Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).

ArticleGoogle Scholar

Shivoga, W. A. The influence of hydrology on the structure of invertebrate communities in two streams flowing into Lake Nakuru, Kenya. Hydrobiologia 458, 121–130 (2001).

ArticleGoogle Scholar

Walsh, R. P. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12, 385–407 (1996).

ArticleGoogle Scholar

Walsh, R. & Newbery, D. The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Phil. Trans. R. Soc. Lond. B 354, 1869–1883 (1999).

ArticleCASGoogle Scholar

Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).

ArticleCASGoogle Scholar

Sakai, S. General flowering in lowland mixed dipterocarp forests of south-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).

ArticleGoogle Scholar

Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

ArticleGoogle Scholar

Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).

ArticleGoogle Scholar

Peng, Q., Xie, S.-P. & Deser, C. Collapsed upwelling projected to weaken ENSO under sustained warming beyond the twenty-first century. Nat. Clim. Change 14, 815–822 (2024).

ArticleGoogle Scholar

Didham, R. K., Ghazoul, J., Stork, N. E. & Davis, A. J. Insects in fragmented forests: a functional approach. Trends Ecol. Evol. 11, 255–260 (1996).

ArticleCASGoogle Scholar

França, F. M. et al. Selective logging intensity and time since logging drive tropical bird and dung beetle diversity: a case study from Amazonia. Env. Conserv. 51, 112–121 (2024).

ArticleGoogle Scholar

Stork, N. E. et al. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conserv. Biol. 31, 924–933 (2017).

ArticleCASGoogle Scholar

Hamer, K. et al. Ecology of butterflies in natural and selectively logged forests of northern Borneo: the importance of habitat heterogeneity. J. Appl. Ecol. 40, 150–162 (2003).

ArticleGoogle Scholar

Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).

ArticleGoogle Scholar

Lewis, O. T. & Basset, Y. in Insect Conservation Biology (eds Stewart, A. J. A. et al.) 34–56 (Royal Entomological Society of London, 2007).

Solar, R. Rd. C. et al. How pervasive is biotic homogenization in human‐modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).

ArticleGoogle Scholar

Faria, A. P. J., Paiva, C. K. S., Calvão, L. B., Cruz, G. M. & Juen, L. Response of aquatic insects to an environmental gradient in Amazonian streams. Env. Monit. Assess. 193, 763 (2021).

ArticleGoogle Scholar

Brasil, L. S., de Lima, E. L., Spigoloni, Z. A., Ribeiro-Brasil, D. R. G. & Juen, L. The habitat integrity index and aquatic insect communities in tropical streams: a meta-analysis. Ecol. Indic. 116, 106495 (2020).

ArticleGoogle Scholar

Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).

ArticleGoogle Scholar

Amaral, P. H. M. D., Silveira, L. S. D., Rosa, B. F. J. V., Oliveira, V. C. D. & Alves, R. D. G. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 15, 60 (2015).

ArticleGoogle Scholar

de Paiva, C. K. S., de Faria, A. P. J., Calvao, L. B. & Juen, L. Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon. Env. Monit. Assess. 189, 393 (2017).

ArticleGoogle Scholar

Oliveira-Junior, J. & Juen, L. The Zygoptera/Anisoptera ratio (Insecta: Odonata): a new tool for habitat alterations assessment in Amazonian streams. Neotrop. Entomol. 48, 552–560 (2019).

ArticleCASGoogle Scholar

Dias-Silva, K., Brasil, L. S., Veloso, G. K. O., Cabette, H. S. R. & Juen, L. Land use change causes environmental homogeneity and low beta-diversity in Heteroptera of streams. Int. J. Limnol. 56, 9 (2020).

ArticleGoogle Scholar

Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).

ArticleCASGoogle Scholar

Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845 (2000).

ArticleCASGoogle Scholar

Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

ArticleCASGoogle Scholar

Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545 (2008).

ArticleGoogle Scholar

Wilker, I. et al. Land-use change in the Amazon decreases ant diversity but increases ant-mediated predation. Insect Conserv. Diversity 16, 379–392 (2023).

ArticleGoogle Scholar

Perry, J. et al. How natural forest conversion affects insect biodiversity in the Peruvian Amazon: can agroforestry help? Forests 7, 82 (2016).

ArticleGoogle Scholar

Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–695 (2007).

ArticleCASGoogle Scholar

Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conserv. 177, 12–24 (2014).

ArticleGoogle Scholar

Stoll, E., Roopsind, A., Maharaj, G., Velazco, S. & Caughlin, T. T. Detecting gold mining impacts on insect biodiversity in a tropical mining frontier with SmallSat imagery. Remote. Sens. Ecol. Conserv. 8, 379–390 (2022).

ArticleGoogle Scholar

Kyerematen, R., Adu-Acheampong, S., Acquah-Lamptey, D. & Anderson, R. S. Using Orthoptera and Hymenoptera indicator groups as evidence of degradation in a mining concession (Tarkwa gold mine) in Ghana. Int. J. Trop. Insect Sci. 40, 221–224 (2020).

ArticleGoogle Scholar

Monge-Salazar, M. J. The effect of artisanal gold mining on aquatic insect communities: a case study in Costa Rica. Aquat. Insects 42, 160–178 (2021).

ArticleGoogle Scholar

Enríquez Espinosa, A. C. et al. Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon. J. Insect Conserv. 24, 1061–1072 (2020).

ArticleGoogle Scholar

Rivera-Pérez, J. M. et al. Effect of mining on the EPT (Ephemeroptera, Plecoptera and Trichoptera) assemblage of Amazonian streams based on their environmental specificity. Hydrobiologia 850, 645–664 (2023).

ArticleGoogle Scholar

Dedieu, N., Rhone, M., Vigouroux, R. & Céréghino, R. Assessing the impact of gold mining in headwater streams of eastern Amazonia using Ephemeroptera assemblages and biological traits. Ecol. Indic. 52, 332–340 (2015).

ArticleGoogle Scholar

Sarkar, S., Gil, J. D. B., Keeley, J. & Jansen, K. The use of pesticides in developing countries and their impact on health and the right to food. European Unionhttps://op.europa.eu/en/publication-detail/-/publication/652ce244-6b53-11eb-aeb5-01aa75ed71a1/language-en (2021).

Weiss, F. T., Ruepert, C., Echeverría-Sáenz, S., Eggen, R. I. L. & Stamm, C. Agricultural pesticides pose a continuous ecotoxicological risk to aquatic organisms in a tropical horticulture catchment. Environ. Adv. 11, 100339 (2023).

ArticleCASGoogle Scholar

Pelinson, R. M., Valente, B. R. S., Shimabukuro, E. M. & Schiesari, L. Impacts of agrochemical intensification and spatial isolation on the assembly and reassembly of temporary pond metacommunities. J. Appl. Ecol. 60, 2235–2250 (2023).

ArticleGoogle Scholar

Rodríguez-Rodríguez, C. E. et al. Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides. Env. Pollut. 284, 117498 (2021).

ArticleGoogle Scholar

Cabrera, M. et al. Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere 337, 139286 (2023).

ArticleCASGoogle Scholar

Rico, A. et al. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere 291, 132821 (2022).

ArticleCASGoogle Scholar

Ali, U. et al. Organochlorine pesticides (OCPs) in South Asian region: a review. Sci. Total. Env. 476–477, 705–717 (2014).

ArticleGoogle Scholar

Wong, F. et al. Organochlorine pesticides in soils and air of southern Mexico: chemical profiles and potential for soil emissions. Atmos. Env. 42, 7737–7745 (2008).

ArticleCASGoogle Scholar

Dalla Villa, R., de Carvalho Dores, E. F. G., Carbo, L. & Cunha, M. L. F. Dissipation of DDT in a heavily contaminated soil in Mato Grosso, Brazil. Chemosphere 64, 549–554 (2006).

ArticleCASGoogle Scholar

Chakraborty, P., Zhang, G., Li, J., Sivakumar, A. & Jones, K. C. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air–soil exchange. Env. Pollut. 204, 74–80 (2015).

ArticleCASGoogle Scholar

Lalah, J., Kaigwara, P., Getenga, Z., Mghenyi, J. & Wandiga, S. The major environmental factors that influence rapid disappearance of pesticides from tropical soils in Kenya. Toxicol. Environ. Chem. 81, 161–197 (2001).

ArticleCASGoogle Scholar

Rosendahl, I., Laabs, V., Atcha-Ahowé, C., James, B. & Amelung, W. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa. J. Env. Monit. 11, 1157–1164 (2009).

ArticleCASGoogle Scholar

Vryzas, Z. Pesticide fate in soil–sediment–water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health 4, 5–9 (2018).

ArticleGoogle Scholar

Schulz, R., Bub, S., Petschick, L. L., Stehle, S. & Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021).

ArticleCASGoogle Scholar

Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392 (2021).

ArticleCASGoogle Scholar

de Carvalho Dores, E. F. G. & Naria De-Lamonica-Freire, E. Contaminação do ambiente aquático por pesticidas: vias de contaminação e dinâmica dos pesticidas no ambiente aquático. Pesticidas Rev. Ecotoxicol. Ehttps://doi.org/10.5380/pes.v9i0.39598 (1999).

Hamada, N. et al. Insetos aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia (Editora do INPA, 2014).

Corbi, J. J., Froehlich, C. G., Strixino, S. T. & dos Santos, A. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Química Nova 33, 644–648 (2010).

ArticleCASGoogle Scholar

Heye, K., Lotz, T., Wick, A. & Oehlmann, J. Interactive effects of biotic and abiotic environmental stressors on carbamazepine toxicity in the non-biting midge Chironomus riparius. Water Res. 156, 92–101 (2019).

ArticleCASGoogle Scholar

Couceiro, S. R., Forsberg, B. R., Hamada, N. & Ferreira, R. Effects of an oil spill and discharge of domestic sewage on the insect fauna of Cururu stream, Manaus, AM, Brazil. Braz. J. Biol. 66, 35–44 (2006).

ArticleCASGoogle Scholar

Martins, R. T., Couceiro, S. R., Melo, A. S., Moreira, M. P. & Hamada, N. Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecol. Indic. 73, 480–491 (2017).

ArticleCASGoogle Scholar

Monchanin, C., Devaud, J.-M., Barron, A. B. & Lihoreau, M. Current permissible levels of metal pollutants harm terrestrial invertebrates. Sci. Total. Env. 779, 146398 (2021).

ArticleCASGoogle Scholar

Archer, C. et al. State of the Tropics 2020 report. James Cook Universityhttps://www.jcu.edu.au/state-of-the-tropics/publications/state-of-the-tropics-2020-report (2020).

Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

ArticleCASGoogle Scholar

Bonebrake, T. C. et al. Tropical cities as windows into the ecosystems of our present and future. Biotropica 57, e13369 (2025).

ArticleGoogle Scholar

New, T. R. Promoting and developing insect conservation in Australia’s urban environments. Austral Entomol. 57, 182–193 (2018).

ArticleGoogle Scholar

Md Meftaul, I., Venkateswarlu, K., Dharmarajan, R., Annamalai, P. & Megharaj, M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total. Environ. 711, 134612 (2020).

ArticleCASGoogle Scholar

Gaona, F. P., Iñiguez-Armijos, C., Brehm, G., Fiedler, K. & Espinosa, C. I. Drastic loss ofinsects (Lepidoptera: Geometridae) in urban landscapes in a tropical biodiversity hotspot. J. Insect Conserv. 25, 395–405 (2021).

ArticleGoogle Scholar

Zakardjian, M., Geslin, B., Mitran, V., Franquet, E. & Jourdan, H. Effects of urbanization on plant–pollinator interactions in the tropics: an experimental approach using exotic plants. Insects 11, 773 (2020).

ArticleGoogle Scholar

Wenzel, A., Grass, I., Nölke, N., Pannure, A. & Tscharntke, T. Wild bees benefit from low urbanization levels and suffer from pesticides in a tropical megacity. Agricult. Ecosyst. Environ. 336, 108019 (2022).

ArticleGoogle Scholar

Sing, K.-W. et al. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in southeast Asian megacities. Genome 59, 827–839 (2016).

ArticleGoogle Scholar

Antonini, Y., Martins, R. P., Aguiar, L. M. & Loyola, R. D. Richness, composition and trophic niche of stingless bee assemblages in urban forest remnants. Urban. Ecosyst. 16, 527–541 (2013).

ArticleGoogle Scholar

Wiederkehr, F. et al. Urbanisation affects ecosystem functioning more than structure in tropical streams. Biol. Conserv. 249, 108634 (2020).

ArticleGoogle Scholar

Ensaldo-Cárdenas, A. S., Rocha-Ortega, M., Schneider, D., Robertson, B. A. & Córdoba-Aguilar, A. Ultraviolet polarized light and individual condition drive habitat selection in tropical damselflies and dragonflies. Anim. Behav. 180, 229–238 (2021).

ArticleGoogle Scholar

Shivanna, K. R. Impact of light pollution on nocturnal pollinators and their pollination services. Proc. Indian Natl Sci. Acad. 88, 626–633 (2022).

ArticleGoogle Scholar

Desouhant, E., Gomes, E., Mondy, N. & Amat, I. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomol. Exp. Appl. 167, 37–58 (2019).

ArticleGoogle Scholar

Freitas, J. R. D., Bennie, J., Mantovani, W. & Gaston, K. J. Exposure of tropical ecosystems to artificial light at night: Brazil as a case study. PLoS ONE 12, e0171655 (2017).

ArticleGoogle Scholar

Andrade-Núñez, M. J. & Aide, T. M. Using nighttime lights to assess infrastructure expansion within and around protected areas in South America. Environ. Res. Commun. 2, 021002 (2020).

ArticleGoogle Scholar

Camacho, L. F., Barragán, G. & Espinosa, S. Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biol. Conserv. 262, 109311 (2021).

ArticleGoogle Scholar

Pan, H., Liang, G. & Lu, Y. Response of different insect groups to various wavelengths of light under field conditions. Insects 12, 427 (2021).

ArticleGoogle Scholar

Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7, eabi8322 (2021).

ArticleGoogle Scholar

Deichmann, J. L. et al. Reducing the blue spectrum of artificial light at night minimises insect attraction in a tropical lowland forest. Insect Conserv. Divers. 14, 247–259 (2021).

ArticleGoogle Scholar

Coleman, J. L., Lum, D. W. H. & Yao, X. From sodium-vapour to LEDs: how an outdoor lighting retrofit affects insects in Singapore. J. Urban. Ecol. 9, juad009 (2023).

ArticleGoogle Scholar

Wilson, A. A. et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Change Biol. 27, 3987–4004 (2021).

ArticleCASGoogle Scholar

Kalinkat, G. et al. Assessing long-term effects of artificial light at night on insects: what is missing and how to get there. Insect Conserv. Divers. 14, 260–270 (2021).

ArticleGoogle Scholar

Kfir, R. Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 90, 619–624 (1997).

ArticleGoogle Scholar

Overholt, W. A. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1640–1641 (Springer Netherlands, 2008).

Fortuna, T. M., Le Gall, P., Mezdour, S. & Calatayud, P.-A. Impact of invasive insects on native insect communities. Curr. Opin. Insect Sci. 51, 100904 (2022).

ArticleGoogle Scholar

Lach, L., Tillberg, C. V. & Suarez, A. V. Contrasting effects of an invasive ant on a native and an invasive plant. Biol. Invasions 12, 3123–3133 (2010).

ArticleGoogle Scholar

Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).

ArticleGoogle Scholar

Tallamy, D. W., Narango, D. L. & Mitchell, A. B. Do non-native plants contribute to insect declines? Ecol. Entomol. 46, 729–742 (2021).

ArticleGoogle Scholar

Stroud, J. T. & Feeley, K. J. A downside of diversity? A response to Gallagher et al. Trends Ecol. Evol. 30, 296–297 (2015).

ArticleGoogle Scholar

Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).

ArticleCASGoogle Scholar

Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).

ArticleGoogle Scholar

Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Phil. Trans. R. Soc. B 372, 20160345 (2017).

ArticleGoogle Scholar

Law, S. J. et al. Darker ants dominate the canopy: testing macroecological hypotheses for patterns in colour along a microclimatic gradient. J. Anim. Ecol. 89, 347–359 (2020).

ArticleGoogle Scholar

Jucker, T. et al. A research agenda for microclimate ecology in human-modified tropical forests. Front. For. Glob. Change 2, 92 (2020).

ArticleGoogle Scholar

Williamson, J. et al. Local‐scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Funct. Ecol. 36, 1655–1667 (2022).

ArticleGoogle Scholar

Moore, M. P., Nalley, S. E. & Hamadah, D. An evolutionary innovation for mating facilitates ecological niche expansion and buffers species against climate change. Proc. Natl Acad. Sci. USA 121, e2313371121 (2024).

ArticleCASGoogle Scholar

Parrett, J. M., Mann, D. J., Chung, A. Y., Slade, E. M. & Knell, R. J. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. 22, 1629–1637 (2019).

ArticleGoogle Scholar

Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).

ArticleCASGoogle Scholar

Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: the role of species dispersal and landscape configuration. Divers. Distrib. 24, 1598–1611 (2018).

ArticleGoogle Scholar

Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

ArticleCASGoogle Scholar

Schebeck, M. et al. Seasonality of forest insects: why diapause matters. Trends Ecol. Evol. 39, 757–770 (2024).

ArticleGoogle Scholar

Hoffmann, A. A. & Bridle, J. Plasticity and the costs of incorrect responses. Trends Ecol. Evol. 38, 219–220 (2023).

ArticleGoogle Scholar

da Silva, C. R., Beaman, J. E., Youngblood, J. P., Kellermann, V. & Diamond, S. E. Vulnerability to climate change increases with trophic level in terrestrial organisms. Sci. Total. Environ. 865, 161049 (2023).

ArticleGoogle Scholar

Wenda, C. et al. Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecol. Lett. 26, 278–290 (2023).

ArticleGoogle Scholar

Parr, C. L. & Bishop, T. R. The response of ants to climate change. Glob. Change Biol. 28, 3188–3205 (2022).

ArticleCASGoogle Scholar

Novotny, V. et al. Why are there so many species of herbivorous insects in tropical rainforests? Science 313, 1115–1118 (2006).

ArticleCASGoogle Scholar

Coley, P. D. & Barone, J. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

ArticleGoogle Scholar

Agrawal, A. A. & Maron, J. L. Long‐term impacts of insect herbivores on plant populations and communities. J. Ecol. 110, 2800–2811 (2022).

ArticleGoogle Scholar

Szefer, P., Molem, K., Sau, A. & Novotny, V. Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. J. Ecol. 108, 1978–1988 (2020).

ArticleCASGoogle Scholar

Ruiz‐Guerra, B., Guevara, R., Mariano, N. A. & Dirzo, R. Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119, 317–325 (2010).

ArticleGoogle Scholar

Lewis, O. T. & Gripenberg, S. Insect seed predators and environmental change. J. Appl. Ecol. 45, 1593–1599 (2008).

ArticleGoogle Scholar

Novotny, V. et al. Guild‐specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J. Anim. Ecol. 79, 1193–1203 (2010).

ArticleGoogle Scholar

Ingala, M. R. et al. Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecol. Evol. 11, 7474–7491 (2021).

ArticleGoogle Scholar

Hemprich‐Bennett, D. R. et al. Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Mol. Ecol. 30, 5844–5857 (2021).

ArticleGoogle Scholar

Hawkins, B. A., Cornell, H. V. & Hochberg, M. E. Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78, 2145–2152 (1997).

ArticleGoogle Scholar

Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634 (2016).

ArticleGoogle Scholar

Ashton, L. A. et al. Termites mitigate the ecosystem-wide effects of drought in tropical rainforest. Science 363, 174–177 (2019).

ArticleCASGoogle Scholar

Griffiths, H. M., Ashton, L. A., Parr, C. L. & Eggleton, P. The impact of invertebrate decomposers on plants and soil. N. Phytol. 231, 2142–2149 (2021).

ArticleGoogle Scholar

Barton, P. S. & Evans, M. J. Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. Ecol. Entomol. 42, 364–374 (2017).

ArticleGoogle Scholar

Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

ArticleCASGoogle Scholar

Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).

ArticleCASGoogle Scholar

Zeng, X. et al. Global contribution of invertebrates to forest litter decomposition. Ecol. Lett. 27, e14423 (2024).

ArticleGoogle Scholar

Medina Madariaga, G. et al. Multiple-stressor effects on leaf litter decomposition in freshwater ecosystems: a meta-analysis. Funct. Ecol. 38, 1523–1536 (2024).

ArticleCASGoogle Scholar

Lemes da Silva, A. L., Lemes, W. P., Andriotti, J., Petrucio, M. M. & Feio, M. J. Recent land-use changes affect stream ecosystem processes in a subtropical island in Brazil. Austral Ecol. 45, 644–658 (2020).

ArticleGoogle Scholar

Pérez, J. et al. Agricultural impacts on lowland tropical streams detected through leaf litter decomposition. Ecol. Indic. 154, 110819 (2023).

ArticleGoogle Scholar

Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).

ArticleGoogle Scholar

Nooten, S. S., Chan, K. H., Schultheiss, P., Bogar, T. A. & Guénard, B. Ant body size mediates functional performance and species interactions in carrion decomposer communities. Funct. Ecol. 36, 1279–1291 (2022).

ArticleCASGoogle Scholar

Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv. 137, 1–19 (2007).

ArticleGoogle Scholar

Gregory, N., Gómez, A., Oliveira, T. M. Fd. S. & Nichols, E. Big dung beetles dig deeper: trait-based consequences for faecal parasite transmission. Int. J. Parasitol. 45, 101–105 (2015).

ArticleGoogle Scholar

Alvarado-Montero, S., Boesing, A. L., Metzger, J. P. & Jaffé, R. Higher forest cover and less contrasting matrices improve carrion removal service by scavenger insects in tropical landscapes. J. Appl. Ecol. 58, 2637–2649 (2021).

ArticleGoogle Scholar

Ferreira, P. A. et al. Forest and connectivity loss simplify tropical pollination networks. Oecologia 192, 577–590 (2020).

ArticleGoogle Scholar

Millard, J. et al. Key tropical crops at risk from pollinator loss due to climate change and land use. Sci. Adv. 9, eadh0756 (2023).

ArticleGoogle Scholar

Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).

ArticleCASGoogle Scholar

Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481 (2019).

ArticleCASGoogle Scholar

Saunders, M. E. et al. Climate mediates roles of pollinator species in plant–pollinator networks. Glob. Ecol. Biogeogr. 32, 511–518 (2023).

ArticleGoogle Scholar

Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).

ArticleGoogle Scholar

Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).

ArticleCASGoogle Scholar

Li, K., Tscharntke, T., Saintes, B., Buchori, D. & Grass, I. Critical factors limiting pollination success in oil palm: a systematic review. Agric. Ecosyst. Environ. 280, 152–160 (2019).

ArticleGoogle Scholar

Chai, S. K. & Wong, S. Y. Five pollination guilds of aroids (Araceae) at Mulu National Park (Sarawak, Malaysian Borneo). Webbia 74, 353–371 (2019).

ArticleGoogle Scholar

Sakai, S., Momose, K., Yumoto, T., Kato, M. & Inoue, T. Beetle pollination of Shorea parvifolia (section Mutica, Dipterocarpaceae) in a general flowering period in Sarawak, Malaysia. Am. J. Bot. 86, 62–69 (1999).

ArticleCASGoogle Scholar

Wardhaugh, C. W. How many species of arthropods visit flowers? Arthropod–Plant Interact. 9, 547–565 (2015).

ArticleGoogle Scholar

Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant–pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).

ArticleGoogle Scholar

Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

ArticleCASGoogle Scholar

Soares, R. G. S., Ferreira, P. A. & Lopes, L. E. Can plant–pollinator network metrics indicate environmental quality? Ecol. Indic. 78, 361–370 (2017).

ArticleGoogle Scholar

Zoller, L., Bennett, J. & Knight, T. M. Plant–pollinator network change across a century in the subarctic. Nat. Ecol. Evol. 7, 102–112 (2023).

ArticleGoogle Scholar

Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

ArticleCASGoogle Scholar

Saunders, M. Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agric. For. Entomol. 20, 298–300 (2018).

ArticleGoogle Scholar

Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).

ArticleGoogle Scholar

Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).

ArticleGoogle Scholar

Blonder, B. et al. Extreme and highly heterogeneous microclimates in selectively logged tropical forests. Front. For. Glob. Change 1, 5 (2018).

ArticleGoogle Scholar

van Klink, R. Delivering on a promise: futureproofing automated insect monitoring methods. Phil. Trans. R. Soc. B 379, 20230105 (2024).

ArticleGoogle Scholar

Buchner, D. et al. Upscaling biodiversity monitoring: metabarcoding estimates 31,846 insect species from Malaise traps across Germany. Mol. Ecol. Resour. 25, e14023 (2024).

ArticleGoogle Scholar

Alvarado-Robledo, E. J. et al. Metabarcoding: opportunities for accelerating monitoring and understanding insect tropical biodiversity. J. Insect Conserv. 28, 589–604 (2024).

ArticleGoogle Scholar

Strutzenberger, P. et al. DNA metabarcoding of light trap samples vs. morphological species identification. Ecol. Entomol. 49, 245–256 (2024).

ArticleGoogle Scholar

Sire, L. et al. Persisting roadblocks in arthropod monitoring using non-destructive metabarcoding from collection media of passive traps. PeerJ 11, e16022 (2023).

ArticleGoogle Scholar

Souto-Vilarós, D. et al. Illuminating arthropod diversity in a tropical forest: assessing biodiversity by automatic light trapping and DNA metabarcoding. Environ. DNA 6, e540 (2024).

ArticleGoogle Scholar

Creedy, T. J., Ng, W. S. & Vogler, A. P. Toward accurate species‐level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 9, 3105–3116 (2019).

ArticleGoogle Scholar

Iwaszkiewicz-Eggebrecht, E. et al. FAVIS: fast and versatile protocol for non-destructive metabarcoding of bulk insect samples. PLoS ONE 18, e0286272 (2023).

ArticleCASGoogle Scholar

Macher, T.-H., Schütz, R., Hörren, T., Beermann, A. J. & Leese, F. It’s raining species: rainwash eDNA metabarcoding as a minimally invasive method to assess tree canopy invertebrate diversity. Environ. DNA 5, 3–11 (2023).

ArticleGoogle Scholar

Arribas, P. et al. Toward global integration of biodiversity big data: a harmonized metabarcode data generation module for terrestrial arthropods. GigaScience 11, giac065 (2022).

ArticleGoogle Scholar

Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).

ArticleGoogle Scholar

Chua, P. Y. S. et al. Future of DNA-based insect monitoring. Trends Genet. 39, 531–544 (2023).

ArticleCASGoogle Scholar

Meier, R., Hartop, E., Pylatiuk, C. & Srivathsan, A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Phil. Trans. R. Soc. B 379, 20230120 (2024).

ArticleGoogle Scholar

Geiger, M. F. et al. Testing the global Malaise trap program — how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).

ArticleGoogle Scholar

Do Nascimento, L. A., Pérez-Granados, C., Alencar, J. B. R. & Beard, K. H. Time and habitat structure shape insect acoustic activity in the Amazon. Phil. Trans. R. Soc. B 379, 20230112 (2024).

ArticleGoogle Scholar

Sethi, S. S. et al. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set. Proc. Natl Acad. Sci. USA 117, 17049–17055 (2020).

ArticleCASGoogle Scholar

Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real‐time and autonomous monitoring of ecosystems with an open, low‐cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).

ArticleGoogle Scholar

Haest, B. et al. Continental-scale patterns in diel flight timing of high-altitude migratory insects. Phil. Trans. R. Soc. B 379, 20230116 (2024).

ArticleGoogle Scholar

Bauer, S., Tielens, E. K. & Haest, B. Monitoring aerial insect biodiversity: a radar perspective. Phil. Trans. R. Soc. B 379, 20230113 (2024).

ArticleGoogle Scholar

Liu, D. et al. Radar monitoring unveils migration dynamics of the yellow-spined bamboo locust (Orthoptera: Arcypteridae). Comput. Electron. Agric. 187, 106306 (2021).

ArticleGoogle Scholar

Anjita, N. A. et al. Doppler weather radars as a game changer in desert locust swarm tracking. Sci. Rep. 14, 31715 (2024).

ArticleCASGoogle Scholar

Chen, H. et al. Lidar as a potential tool for monitoring migratory insects. iScience 27, 109588 (2024).

ArticleGoogle Scholar

Wang, Y., Zhao, C., Dong, D. & Wang, K. Real-time monitoring of insects based on laser remote sensing. Ecol. Indic. 151, 110302 (2023).

ArticleGoogle Scholar

Rydhmer, K. et al. Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 12, 2603 (2022).

ArticleCASGoogle Scholar

Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).

ArticleGoogle Scholar

Møller, A. P. et al. Citizen science for quantification of insect abundance on windshields of cars across two continents. Front. Ecol. Evol. 9, 657178 (2021).

ArticleGoogle Scholar

Slade, E. M. & Ong, X. R. The future of tropical insect diversity: strategies to fill data and knowledge gaps. Curr. Opin. Insect Sci. 58, 101063 (2023).

ArticleGoogle Scholar

Sánchez Herrera, M. et al. Systematic challenges and opportunities in insect monitoring: a Global South perspective. Phil. Trans. R. Soc. B 379, 20230102 (2024).

ArticleGoogle Scholar

Grinder, R. M. & Wiens, J. J. Niche width predicts extinction from climate change and vulnerability of tropical species. Glob. Change Biol. 29, 618–630 (2023).

ArticleCASGoogle Scholar

Ollerton, J. Biogeography: are tropical species less specialised? Curr. Biol. 22, R914–R915 (2012).

ArticleCASGoogle Scholar

Doré, M. et al. Mutualistic interactions shape global spatial congruence and climatic niche evolution in neotropical mimetic butterflies. Ecol. Lett. 26, 843–857 (2023).

ArticleGoogle Scholar

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

ArticleCASGoogle Scholar

Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41, 1184–1193 (2018).

ArticleGoogle Scholar

Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

ArticleGoogle Scholar

Boyle, M. J. The Resilience of Tropical Forest Invertebrates to Microclimate Change. PhD thesis (Imperial College London, 2020).

Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am. Nat. 178, S80–S96 (2011).

ArticleGoogle Scholar

Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).

ArticleGoogle Scholar

Scheffers, B. R., Evans, T. A., Williams, S. E. & Edwards, D. P. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol. Lett. 10, 20140819 (2014).

ArticleGoogle Scholar

Kang, C. et al. Climate predicts both visible and near-infrared reflectance in butterflies. Ecol. Lett. 24, 1869–1879 (2021).

ArticleGoogle Scholar

Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).

ArticleCASGoogle Scholar

Henle, K., Sarre, S. & Wiegand, K. The role of density regulation in extinction processes and population viability analysis. Biodivers. Conserv. 13, 9–52 (2004).

ArticleGoogle Scholar

Porter, E. E. & Hawkins, B. A. Latitudinal gradients in colony size for social insects: termites and ants show different patterns. Am. Nat. 157, 97–106 (2001).

ArticleCASGoogle Scholar

Kaspari, M. & Vargo, E. L. Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am. Nat. 145, 610–632 (1995).

ArticleGoogle Scholar

Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

ArticleCASGoogle Scholar

Muñoz Sabater, J. ERA5 — Land monthly averaged data from 1981 to present. Copernicus Climate Change Service Climate Data Storehttps://essd.copernicus.org/articles/13/4349/2021/essd-13-4349-2021-assets.html (2019).

Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote. Sens. 13, 922 (2021).

ArticleGoogle Scholar

Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

ArticleGoogle Scholar

Chuvieco, E. et al. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel product, version 5.1. Centre for Environmental Data Analysishttps://cir.nii.ac.jp/crid/1880583643079782016 (2018).

Maggi, F., Tang, F., La Cecilia, D. & McBratney, A. Global pesticide grids (PEST-CHEMGRIDS), version 1.01. NASA Socioeconomic Data and Applications Center (SEDAC)https://www.earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-fermanv1-pestg-v1.01-1.01 (2020)

Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).

Google Scholar

Sharp, A. C., Barclay, M. V., Chung, A. Y. & Ewers, R. M. Tropical logging and deforestation impacts multiple scales of weevil beta-diversity. Biol. Conserv. 234, 172–179 (2019).

ArticleGoogle Scholar

Tawatao, N. et al. Biodiversity of leaf-litter ants in fragmented tropical rainforests of Borneo: the value of publically and privately managed forest fragments. Biodivers. Conserv. 23, 3113–3126 (2014).

ArticleGoogle Scholar

Scriven, S. A. et al. Assessing the effectiveness of protected areas for conserving range‐restricted rain forest butterflies in Sabah, Borneo. Biotropica 52, 380–391 (2020).

ArticleGoogle Scholar

Hanski, I., Koivulehto, H., Cameron, A. & Rahagalala, P. Deforestation and apparent extinctions of endemic forest beetles in Madagascar. Biol. Lett. 3, 344–347 (2007).

ArticleGoogle Scholar

Fonseca, C. R. The silent mass extinction of insect herbivores in biodiversity hotspots. Conserv. Biol. 23, 1507–1515 (2009).

ArticleGoogle Scholar

Ranarilalatiana, T. et al. Remaining forests on the central highlands of Madagascar — endemic and endangered aquatic beetle fauna uncovered. Ecol. Evol. 12, e9580 (2022).

ArticleGoogle Scholar

Steibl, S., Franke, J. & Laforsch, C. Tourism and urban development as drivers for invertebrate diversity loss on tropical islands. R. Soc. Open. Sci. 8, 210411 (2021).

ArticleGoogle Scholar

Wagner, D. L. & Van Driesche, R. G. Threats posed to rare or endangered insects by invasions of non-native species. Annu. Rev. Entomol. 55, 547–568 (2010).

ArticleCASGoogle Scholar

Corlett, R. T. Invasive aliens on tropical East Asian islands. Biodivers. Conserv. 19, 411–423 (2010).

ArticleGoogle Scholar

Roy, H. et al. Summary for policymakers of the thematic assessment report on invasive alien species and their control. IPBEShttps://www.ipbes.net/ias (2023).

Gray, A. et al. The status of the invertebrate fauna on the South Atlantic island of St Helena: problems, analysis, and recommendations. Biodivers. Conserv. 28, 275–296 (2019).

ArticleGoogle Scholar

Tercel, M. P., Cuff, J. P., Symondson, W. O. & Vaughan, I. P. Non‐native ants drive dramatic declines in animal community diversity: a meta‐analysis. Insect Conserv. Divers. 16, 733–744 (2023).

ArticleGoogle Scholar

Sharp, A. & Tawatao, N. Colonization and coexistence of non‐native ants on a model Atlantic island. Divers. Distrib. 29, 1278–1288 (2023).

ArticleGoogle Scholar

Roura‐Pascual, N., Sanders, N. J. & Hui, C. The distribution and diversity of insular ants: do exotic species play by different rules? Glob. Ecol. Biogeogr. 25, 642–654 (2016).

ArticleGoogle Scholar

Aulus-Giacosa, L., Ollier, S. & Bertelsmeier, C. Non-native ants are breaking down biogeographic boundaries and homogenizing community assemblages. Nat. Commun. 15, 2266 (2024).

ArticleCASGoogle Scholar

Wetterer, J. K. Worldwide spread of the African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Myrmecol. N. 17, 51–62 (2012).

Google Scholar

Nakamura, A. et al. The role of human disturbance in island biogeography of arthropods and plants: an information theoretic approach. J. Biogeogr. 42, 1406–1417 (2015).

ArticleGoogle Scholar

Wetterer, J. K. Biology and impacts of Pacific Island invasive species. 3. The African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Pacif. Sci. 61, 437–456 (2007).

ArticleGoogle Scholar

Wetterer, J. K. & Espadaler, X. Ants (Hymenoptera: Formicidae) of the Cabo Verde Islands. Trans. Am. Entomol. Soc. 147, 485–502 (2021).

ArticleGoogle Scholar

St Clair, J. J. The impacts of invasive rodents on island invertebrates. Biol. Conserv. 144, 68–81 (2011).

ArticleGoogle Scholar

Harper, G. A. & Bunbury, N. Invasive rats on tropical islands: their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).

Google Scholar

Ashmole, P. & Ashmole, M. St Helena and Ascension Island: a Natural History (Anthony Nelson, 2000).

Priddel, D., Carlile, N., Humphrey, M., Fellenberg, S. & Hiscox, D. Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation. Biodivers. Conserv. 12, 1391–1403 (2003).

ArticleGoogle Scholar

Kwak, M. L. Australia’s vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. J. Insect Conserv. 22, 545–550 (2018).

ArticleGoogle Scholar

Pickering, J. & Norris, C. A. New evidence concerning the extinction of the endemic murid Rattus macleari from Christmas Island, Indian Ocean. Aust. Mammal. 19, 19–25 (1996).

ArticleGoogle Scholar

Russell, J. C. & Holmes, N. D. Tropical island conservation: rat eradication for species recovery. Biol. Conserv. 185, 1–7 (2015).

ArticleGoogle Scholar

Gaigher, R., Samways, M., Jolliffe, K. & Jolliffe, S. Precision control of an invasive ant on an ecologically sensitive tropical island: a principle with wide applicability. Ecol. Appl. 22, 1405–1412 (2012).

ArticleCASGoogle Scholar

Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

ArticleCASGoogle Scholar

Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

ArticleCASGoogle Scholar

Fukagawa, N. K. & Ziska, L. H. Rice: importance for global nutrition. J. Nutr. Sci. Vitaminol. 65, S2–S3 (2019).

ArticleGoogle Scholar

Heong. K. L., Song, Y. H., Pimsamarn, S., Zhang, R. & Bae, S. D. in Climate Change and Rice (eds Peng, S. et al.) 326–335 (Springer, 1995).

Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

ArticleGoogle Scholar

Malcolm, S. B. Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annu. Rev. Entomol. 63, 277–302 (2018).

ArticleCASGoogle Scholar

Kenna, D. et al. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol. Evol. 9, 5637–5650 (2019).

ArticleGoogle Scholar

Farnan, H., Yeeles, P. & Lach, L. Sublethal doses of insecticide reduce thermal tolerance of a stingless bee and are not avoided in a resource choice test. R. Soc. Open. Sci. 10, 230949 (2023).

ArticleCASGoogle Scholar

Gintoron, C. S. et al. Factors affecting pollination and pollinators in oil palm plantations: a review with an emphasis on the Elaeidobius kamerunicus weevil (Coleoptera: Curculionidae). Insects 14, 454 (2023).

ArticleGoogle Scholar

Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).

ArticleGoogle Scholar

Williamson, J. et al. Riparian buffers act as a microclimatic refugia in oil palm landscapes. J. Appl. Ecol. 58, 431–442 (2021).

ArticleGoogle Scholar

Mohd-Azlan, J., Conway, S., Travers, T. & Lawes, M. The filtering effect of oil palm plantations on potential insect pollinator assemblages from remnant forest patches. Land 12, 1256 (2023).

ArticleGoogle Scholar

Vector-borne diseases. World Health Organizationhttps://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2024).

Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).

ArticleGoogle Scholar

Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).

ArticleGoogle Scholar

Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in southeast Asia. Nat. Commun. 10, 4299 (2019).

ArticleGoogle Scholar

KM, F. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).

ArticleGoogle Scholar

Brady, O. J. & Hay, S. I. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).

ArticleCASGoogle Scholar

Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).

ArticleGoogle Scholar

Chaves, L. F., Cohen, J. M., Pascual, M. & Wilson, M. L. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl. Trop. Dis. 2, e176 (2008).

ArticleGoogle Scholar

Narladkar, B. W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World 11, 151–160 (2018).

ArticleCASGoogle Scholar

Download references

Acknowledgements

This work was supported by the RGC Collaborative Research Fund (C7048-22GF) and the NSFC National Excellent Young Scientist Fund (AR215206). F.M.F. and K.D.d.S. are funded by the UKRI FLF (MR/X032949/1]) and CNPq (311550/2023-1, 443860/2024-6, 441257/2023-2 and 444350/2024-1). O.T.L. is funded by NERC NE/X000117/1. The authors thank P. Eggleton for comments on an early version of this manuscript and V. Amaral for assistance with Fig. 3.

Author information

Authors and Affiliations

School of Biological Sciences, The University of Hong Kong, Hong Kong, China

Michael J. W. Boyle, Timothy C. Bonebrake, Michel A. K. Dongmo, Martha J. Ledger, Adam C. Sharp & Louise A. Ashton

Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil

Karina Dias da Silva & Filipe Machado França

School of Biological Sciences, University of Bristol, Bristol, UK

Filipe Machado França

EcoHealth Alliance, New York, NY, USA

Nichar Gregory

School of Environment and Science, Griffith University, Nathan, Queensland, Australia

Roger L. Kitching & Nigel E. Stork

Department of Biology, University of Oxford, Oxford, UK

Owen T. Lewis

IUCN SSC Atlantic Island Invertebrate Specialist Group, Salisbury, UK

Adam C. Sharp

Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK

Joseph Williamson

Authors

Michael J. W. Boyle

View author publications

You can also search for this author inPubMedGoogle Scholar

2. Timothy C. Bonebrake

View author publications

You can also search for this author inPubMedGoogle Scholar

3. Karina Dias da Silva

View author publications

You can also search for this author inPubMedGoogle Scholar

4. Michel A. K. Dongmo

View author publications

You can also search for this author inPubMedGoogle Scholar

5. Filipe Machado França

View author publications

You can also search for this author inPubMedGoogle Scholar

6. Nichar Gregory

View author publications

You can also search for this author inPubMedGoogle Scholar

7. Roger L. Kitching

View author publications

You can also search for this author inPubMedGoogle Scholar

8. Martha J. Ledger

View author publications

You can also search for this author inPubMedGoogle Scholar

9. Owen T. Lewis

View author publications

You can also search for this author inPubMedGoogle Scholar

10. Adam C. Sharp

View author publications

You can also search for this author inPubMedGoogle Scholar

11. Nigel E. Stork

View author publications

You can also search for this author inPubMedGoogle Scholar

12. Joseph Williamson

View author publications

You can also search for this author inPubMedGoogle Scholar

13. Louise A. Ashton

View author publications

You can also search for this author inPubMedGoogle Scholar

Contributions

M.J.W.B. and L.A.A. conceptualized and led the development of the manuscript. All authors contributed equally to the writing and editing.

Corresponding author

Correspondence to Louise A. Ashton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks G. Maharaj, D. Amorim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyle, M.J.W., Bonebrake, T.C., Dias da Silva, K. et al. Causes and consequences of insect decline in tropical forests. Nat. Rev. Biodivers. (2025). https://doi.org/10.1038/s44358-025-00038-9

Download citation

Accepted:05 March 2025

Published:04 April 2025

DOI:https://doi.org/10.1038/s44358-025-00038-9

Share this article

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

Read full news in source page